
이동아

Software cost estimation

Objectives

• To introduce the fundamentals of software costing and pricing

• To describe three metrics for software productivity assessment

• To explain why different techniques should be used for software estimation

• To describe the principles of the COCOMO 2 algorithmic cost estimation model

1

Topics covered

• Software productivity

• Estimation techniques

• Algorithmic cost modelling

• Project duration and staffing

2

Fundamental estimation questions

• How much effort is required to complete an activity?

• How much calendar time is needed to complete an activity?

• What is the total cost of an activity?

• Project estimation and scheduling are interleaved management activities.

• Software cost components

– Hardware and software costs.

– Travel and training costs.

– Effort costs (the dominant factor in most projects)

• The salaries of engineers involved in the project; Social and insurance costs.

– Effort costs must take overheads into account

• Costs of building, heating, lighting; Costs of networking and communications; Costs of shared

facilities (e.g library, staff restaurant, etc.).

3

Costing and pricing

• Estimates are made to discover the cost, to the developer, of producing a software

system.

• There is not a simple relationship between the development cost and the price

charged to the customer.

• Broader organisational, economic, political and business considerations influence

the price charged.

4

Market opportunity
A development organisation may quote a low price because it wishes to move into a new segment of the s
oftware market. Accepting a low profit on one project may give the opportunity of more profit later. The e
xperience gained may allow new products to be developed.

Cost estimate uncertainty If an organisation is unsure of its cost estimate, it may increase its price by some contingency over and ab
ove its normal profit.

Contractual terms
A customer may be willing to allow the developer to retain ownership of the source code and reuse it in ot
her projects. The price charged may then be less than if the software source code is handed over to the cus
tomer.

Requirements volatility If the requirements are likely to change, an organisation may lower its price to win a contract. After the co
ntract is awarded, high prices can be charged for changes to the requirements.

Financial health Developers in financial difficulty may lower their price to gain a contract. It is better to make a smaller tha
n normal profit or break even than to go out of business.

Software pricing factors

Software productivity

• A measure of the rate at which individual engineers involved in software

development produce software and associated documentation.

• Not quality-oriented although quality assurance is a factor in productivity

assessment.

• Essentially, we want to measure useful functionality produced per time unit.

5

Productivity measures

• Size related measures based on some output from the software process. This may

be lines of delivered source code, object code instructions, etc.

• Function-related measures based on an estimate of the functionality of the

delivered software. Function-points are the best known of this type of measure.

• Measurement problems

– Estimating the size of the measure (e.g. how many function points).

– Estimating the total number of programmer months that have elapsed.

– Estimating contractor productivity (e.g. documentation team) and incorporating this

estimate in overall estimate.

6

Lines of code

• What's a line of code?

– The measure was first proposed when programs were typed on cards with one line per

card;

– How does this correspond to statements as in Java which can span several lines or where

there can be several statements on one line.

• What programs should be counted as part of the system?

• This model assumes that there is a linear relationship between system size and

volume of documentation.

7

Productivity comparisons

• The lower level the language, the more productive the programmer

– The same functionality takes more code to implement in a lower-level language than in a

high-level language.

• The more verbose the programmer, the higher the productivity

– Measures of productivity based on lines of code suggest that programmers who write

verbose code are more productive than programmers who write compact code.

8

 Analysis Design Coding Testing Documentation

Assembly code
High-level language

3 weeks
3 weeks

5 weeks
5 weeks

8 weeks
4 weeks

10 weeks
6 weeks

2 weeks
2 weeks

 Size Effort Productivity

Assembly code
High-level language

5000 lines
1500 lines

28 weeks
20 weeks

714 lines/month
300 lines/month

System development times

Function points

• Based on a combination of program characteristics

– external inputs and outputs;

– user interactions;

– external interfaces;

– files used by the system.

• A weight is associated with each of these and the function point count is

computed by multiplying each raw count by the weight and summing all values.

9

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐 = � 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜 𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡 × (𝑤𝑤𝑤𝑤𝑤𝑤)

Function points

• The function point count is modified by complexity of the project

• FPs can be used to estimate LOC depending on the average number of LOC per

FP for a given language

– LOC = AVC * number of function points;

– AVC is a language-dependent factor varying from 200-300 for assemble language to 2-

40 for a 4GL;

• FPs are very subjective. They depend on the estimator

– Automatic function-point counting is impossible.

10

Object points

• Object points (alternatively named application points) are an alternative function-

related measure to function points when 4Gls or similar languages are used for

development.

• Object points are NOT the same as object classes.

• The number of object points in a program is a weighted estimate of

– The number of separate screens that are displayed;

– The number of reports that are produced by the system;

– The number of program modules that must be developed to supplement the database

code;

11

Object point estimation

• Object points are easier to estimate from a specification than function points as

they are simply concerned with screens, reports and programming language

modules.

• They can therefore be estimated at a fairly early point in the development process.

• At this stage, it is very difficult to estimate the number of lines of code in a

system.

12

Productivity estimates

• Real-time embedded systems, 40-160 LOC/P-month.

• Systems programs , 150-400 LOC/P-month.

• Commercial applications, 200-900 LOC/P-month.

• In object points, productivity has been measured between 4 and 50 object

points/month depending on tool support and developer capability.

13

Application domain experi
ence

Knowledge of the application domain is essential for effective software development. Engineers who alrea
dy understand a domain are likely to be the most productive.

Process quality The development process used can have a significant effect on productivity. This is covered in Chapter 28.

Project size The larger a project, the more time required for team communications. Less time is available for developm
ent so individual productivity is reduced.

Technology support Good support technology such as CASE tools, configuration management systems, etc. can improve produ
ctivity.

Working environment As I discussed in Chapter 25, a quiet working environment with private work areas contributes to improve
d productivity.

Factors affecting productivity

Quality and productivity

• All metrics based on volume/unit time are flawed because they do not take

quality into account.

• Productivity may generally be increased at the cost of quality.

• It is not clear how productivity/quality metrics are related.

• If requirements are constantly changing then an approach based on counting

lines of code is not meaningful as the program itself is not static;

14

Estimation techniques

• There is no simple way to make an accurate estimate of the effort required to

develop a software system

– Initial estimates are based on inadequate information in a user requirements definition;

– The software may run on unfamiliar computers or use new technology;

– The people in the project may be unknown.

• Project cost estimates may be self-fulfilling

– The estimate defines the budget and the product is adjusted to meet the budget.

15

Changing technologies

• Changing technologies may mean that previous estimating experience does not

carry over to new systems

– Distributed object systems rather than mainframe systems;

– Use of web services;

– Use of ERP or database-centred systems;

– Use of off-the-shelf software;

– Development for and with reuse;

– Development using scripting languages;

– The use of CASE tools and program generators.

16

Estimation techniques

17

Algorithmic cost
modelling

A model based on historical cost information that relates some software metric
(usually its size) to the project cost is used. An estimate is made of that metric and the
model predicts the effort required.

Expert judgement

Several experts on the proposed software development techniques and the application
domain are consulted. They each estimate the project cost. These estimates are
compared and discussed. The estimation process iterates until an agreed estimate is
reached.

Estimation by
analogy

This technique is applicable when other projects in the same application domain have
been completed. The cost of a new project is estimated by analogy with these
completed projects. Myers (Myers 1989) gives a very clear description of this
approach.

Parkinson’s Law

Parkinson’s Law states that work expands to fill the time available. The cost is
determined by available resources rather than by objective assessment. If the software
has to be delivered in 12 months and 5 people are available, the effort required is
estimated to be 60 person-months.

Pricing to win
The software cost is estimated to be whatever the customer has available to spend on
the project. The estimated effort depends on the customer’s budget and not on the
software functionality.

Pricing to win

• The project costs whatever the customer has to spend on it.

• Advantages:

– You get the contract.

• Disadvantages:

– The probability that the customer gets the system he or she wants is small. Costs do not

accurately reflect the work required.

18

Top-down and bottom-up estimation

• Any of these approaches may be used top-down or bottom-up.

• Top-down

– Start at the system level and assess the overall system functionality and how this is

delivered through sub-systems.

• Bottom-up

– Start at the component level and estimate the effort required for each component. Add

these efforts to reach a final estimate.

19

Top-down estimation

• Usable without knowledge of the system architecture and the components that

might be part of the system.

• Takes into account costs such as integration, configuration management and

documentation.

• Can underestimate the cost of solving difficult low-level technical problems.

20

Bottom-up estimation

• Usable when the architecture of the system is known and components identified.

• This can be an accurate method if the system has been designed in detail.

• It may underestimate the costs of system level activities such as integration and

documentation.

21

Estimation methods

• Each method has strengths and weaknesses.

• Estimation should be based on several methods.

• If these do not return approximately the same result, then you have insufficient

information available to make an estimate.

• Some action should be taken to find out more in order to make more accurate

estimates.

• Pricing to win is sometimes the only applicable method.

22

Pricing to win

• This approach may seem unethical and un-businesslike.

• However, when detailed information is lacking it may be the only appropriate

strategy.

• The project cost is agreed on the basis of an outline proposal and the

development is constrained by that cost.

• A detailed specification may be negotiated or an evolutionary approach used for

system development.

23

Algorithmic cost modelling

• Cost is estimated as a mathematical function of product, project and process

attributes whose values are estimated by project managers:

– 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴 × 𝑆𝑆𝑆𝑒𝐵 × 𝑀

– A is an organisation-dependent constant

– B reflects the disproportionate effort for large projects; and

– M is a multiplier reflecting product, process and people attributes.

• The most commonly used product attribute for cost estimation is code size.

• Most models are similar but they use different values for A, B and M.

24

Estimation accuracy

• The size of a software system can only be known accurately when it is finished.

– Several factors influence the final size

• Use of COTS and components;

• Programming language;

• Distribution of system.

• As the development process progresses then the size estimate becomes more

accurate.

25

x

2 x

4x

0.5x

0.25x

Feasibility Requirements Design Code Delivery

Estimate uncertainty

The COCOMO model

• An empirical model based on project experience.

• Well-documented, ‘independent’ model which is not tied to a specific software

vendor.

• Long history from initial version published in 1981 (COCOMO-81) through various

instantiations to COCOMO 2.

• COCOMO 2 takes into account different approaches to software development,

reuse, etc.

26

Project complexity Formula Description

Simple 𝑃𝑃 = 2.4 𝐾𝐾𝐾𝐾 1.05 × 𝑀 Well-understood applications developed by small teams.

Moderate 𝑃𝑃 = 3.0 𝐾𝐾𝐾𝐾 1.15 × 𝑀 More complex projects where team members may have limited
experience of related systems.

Embedded 𝑃𝑃 = 3.6 𝐾𝐾𝐾𝐾 1.20 × 𝑀
Complex projects where the software is part of a strongly coupled
complex of hardware, software, regulations and operational
procedures.

COCOMO 81

COCOMO 2

• COCOMO 81 was developed with the assumption that a waterfall process would

be used and that all software would be developed from scratch.

• Since its formulation, there have been many changes in software engineering

practice and COCOMO 2 is designed to accommodate different approaches to

software development.

27

COCOMO 2 models

• COCOMO 2 incorporates a range of sub-models that produce increasingly

detailed software estimates.

• The sub-models in COCOMO 2 are:

– Application composition model. Used when software is composed from existing parts.

– Early design model. Used when requirements are available but design has not yet started.

– Reuse model. Used to compute the effort of integrating reusable components.

– Post-architecture model. Used once the system architecture has been designed and more

information about the system is available.

28

Use of COCOMO 2 models

29

Number of
application points

Application
composition model

Prototype systems
developed using

scripting, DB
programming etc.

Based on Used for

Number of
function points Early design model

Initial effort
estimation based on
system requirements
and design options

Based on Used for

Number of lines of
code reused or

generated
Reuse model

Effort to integrate
reusable

components or
automatically

generated code

Based on Used for

Number of lines of
source code

Post-architecture
model

Development effort
based on system

design specification

Based on Used for

COCOMO 2 models

• Application composition model

– 𝑃𝑃 =
𝑁𝑁𝑁× 1−%𝑟𝑟𝑟𝑟𝑟

100

𝑃𝑃𝑃𝑃

• Early design model

– 𝑃𝑃 = 2.94 × 𝑆𝑆𝑆𝑒𝐵 × 𝑀, 𝑀 = 𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅 × 𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃 × 𝐹𝐹𝐹𝐹 × 𝑆𝑆𝑆𝑆

• The reuse model

– 𝑃𝑀𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐴𝐴𝐴×𝐴𝐴

100
𝐴𝐴𝐴𝐴𝐴𝐴

, 𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴 × 1 − 𝐴𝐴
100

× 𝐴𝐴𝐴

• Post-architecture level

– 𝑃𝑃 = 2.94 × 𝑆𝑆𝑆𝑒𝐵 × 𝑀

30

Application composition model

• Supports prototyping projects and projects where there is extensive reuse.

• Based on standard estimates of developer productivity in application (object)

points/month.

• Takes CASE tool use into account.

• Formula is

– 𝑃𝑃 =
𝑁𝑁𝑁× 1−%𝑟𝑟𝑟𝑟𝑟

100

𝑃𝑃𝑃𝑃

– PM is the effort in person-months, NAP is the number of application points and PROD is

the productivity.

31

Developer’s experience and capability Very low Low Nominal High Very high

ICASE maturity and capability Very low Low Nominal High Very high

PROD (NOP/month) 4 7 13 25 50

Object point productivity

Early design model

• Estimates can be made after the requirements have been agreed.

• Based on a standard formula for algorithmic models

– 𝑃𝑃 = 2.94 × 𝑆𝑆𝑆𝑒𝐵 × 𝑀

– 𝑀 = 𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅 × 𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃 × 𝐹𝐹𝐹𝐹 × 𝑆𝑆𝑆𝑆

– A = 2.94 in initial calibration, Size in KLOC, B varies from 1.1 to 1.24 depending on

novelty of the project, development flexibility, risk management approaches and the

process maturity.

32

RCPX - product reliability and complexity;
RUSE - the reuse required;
PDIF - platform difficulty;
PREX - personnel experience;
PERS - personnel capability;
SCED - required schedule;
FCIL - the team support facilities.

The reuse model

• Takes into account black-box code that is reused without change and code that

has to be adapted to integrate it with new code.

• There are two versions:

– Black-box reuse where code is not modified. An effort estimate (PM) is computed.

– White-box reuse where code is modified. A size estimate equivalent to the number of

lines of new source code is computed. This then adjusts the size estimate for new code.

33

Reuse model estimates

• For generated code:

– 𝑃𝑀𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐴𝐴𝐴×𝐴𝐴

100
𝐴𝐴𝐴𝐴𝐴𝐴

– ASLOC is the number of lines of generated code

– AT is the percentage of code automatically generated.

– ATPROD is the productivity of engineers in integrating this code.

• When code has to be understood and integrated:

– 𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴 × 1 − 𝐴𝐴
100

× 𝐴𝐴𝐴

– ASLOC and AT as before.

– AAM is the adaptation adjustment multiplier computed from the costs of changing the

reused code, the costs of understanding how to integrate the code and the costs of

reuse decision making.

34

Post-architecture level

• Uses the same formula as the early design model but with 17 rather than 7

associated multipliers.

• The code size is estimated as:

– Number of lines of new code to be developed;

– Estimate of equivalent number of lines of new code computed using the reuse model;

– An estimate of the number of lines of code that have to be modified according to

requirements changes.

35

Precedentedness Reflects the previous experience of the organisation with this type of project. Very low means no previous expe
rience, Extra high means that the organisation is completely familiar with this application domain.

Development flexibility Reflects the degree of flexibility in the development process. Very low means a prescribed process is used; Extr
a high means that the client only sets general goals.

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means little analysis, Extra high means a complete a th
orough risk analysis.

Team cohesion Reflects how well the development team know each other and work together. Very low means very difficult int
eractions, Extra high means an integrated and effective team with no communication problems.

Process maturity Reflects the process maturity of the organisation. The computation of this value depends on the CMM Maturity
Questionnaire but an estimate can be achieved by subtracting the CMM process maturity level from 5.

Multipliers

• Product attributes

– Concerned with required characteristics of the software product being developed.

• Computer attributes

– Constraints imposed on the software by the hardware platform.

• Personnel attributes

– Multipliers that take the experience and capabilities of the people working on the project

into account.

• Project attributes

– Concerned with the particular characteristics of the software development project.

36

Effects of cost drivers

37

Exponent value 1.17

System size (including factors for reuse and requ
irements volatility) 128, 000 DSI

Initial COCOMO estimate without cost drivers 730 person-months

Reliability Very high, multiplier = 1.39

Complexity Very high, multiplier = 1.3

Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12

Schedule Accelerated, multiplier = 1.29

Adjusted COCOMO estimate 2306 person-months

Reliability Very low, multiplier = 0.75

Complexity Very low, multiplier = 0.75

Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72

Schedule Normal, multiplier = 1

Adjusted COCOMO estimate 295 person-months

Project planning

• Algorithmic cost models provide a basis for project planning as they allow

alternative strategies to be compared.

• Embedded spacecraft system

– Must be reliable;

– Must minimise weight (number of chips);

– Multipliers on reliability and computer constraints > 1.

– Cost components

• Target hardware

• Development platform

• Development effort.

38

Management options

39

A. Use existing hardware,
development system and

development team

B. Processor and
memory upgrade

Hardware cost increase
experience decrease

C. Memory
upgrade only

Hardware cost
increase

D. More
experienced staff

E. New development
system

Hardware cost increase
experience decrease

F. Staff with
hardware

experience

Option RELY STOR TIME TOOLS LTEX Total effort Software cost Hardware cost Total cost
A 1.39 1.06 1.11 0.86 1 63 949393 100000 1049393
B 1.39 1 1 1.12 1.22 88 1313550 120000 1402025
C 1.39 1 1.11 0.86 1 60 895653 105000 1000653
D 1.39 1.06 1.11 0.86 0.84 51 769008 100000 897490
E 1.39 1 1 0.72 1.22 56 844425 220000 1044159
F 1.39 1 1 1.12 0.84 57 851180 120000 1002706

Management option costs

• Option D (use more experienced staff)
appears to be the best alternative

• However, it has a high associated
risk as experienced staff may be
difficult to find.

• Option C (upgrade memory) has a lower
cost saving but very low risk.

• Overall, the model reveals the
importance of staff experience in
software development.

Project duration and staffing

• As well as effort estimation, managers must estimate the calendar time required

to complete a project and when staff will be required.

• Calendar time can be estimated using a COCOMO 2 formula

– 𝑇𝑇𝑇𝑇 = 3 × 𝑃𝑃 0.33+0.2× 𝐵−1.01

– PM is the effort computation and B is the exponent computed as discussed above (B is 1

for the early prototyping model). This computation predicts the nominal schedule for the

project.

• The time required is independent of the number of people working on the project.

40

Staffing requirements

• Staff required can’t be computed by diving the development time by the required

schedule.

• The number of people working on a project varies depending on the phase of the

project.

• The more people who work on the project, the more total effort is usually

required.

• A very rapid build-up of people often correlates with schedule slippage.

41

Key points

• There is not a simple relationship between the price charged for a system and its

development costs.

• Factors affecting productivity include individual aptitude, domain experience, the development

project, the project size, tool support and the working environment.

• Software may be priced to gain a contract and the functionality adjusted to the price.

• Different techniques of cost estimation should be used when estimating costs.

• The COCOMO model takes project, product, personnel and hardware attributes into account

when predicting effort required.

• Algorithmic cost models support quantitative option analysis as they allow the costs of

different options to be compared.

• The time to complete a project is not proportional to the number of people working on the

project.

42

	Software cost estimation
	Objectives
	Topics covered
	Fundamental estimation questions
	Costing and pricing
	Software productivity
	Productivity measures
	Lines of code
	Productivity comparisons
	Function points
	Function points
	Object points
	Object point estimation
	Productivity estimates
	Quality and productivity
	Estimation techniques
	Changing technologies
	Estimation techniques
	Pricing to win
	Top-down and bottom-up estimation
	Top-down estimation
	Bottom-up estimation
	Estimation methods
	Pricing to win
	Algorithmic cost modelling
	Estimation accuracy
	The COCOMO model
	COCOMO 2
	COCOMO 2 models
	Use of COCOMO 2 models
	COCOMO 2 models
	Application composition model
	Early design model
	The reuse model
	Reuse model estimates
	Post-architecture level
	Multipliers
	Effects of cost drivers
	Project planning
	Management options
	Project duration and staffing
	Staffing requirements
	Key points

