
Dong-Ah Lee

Software Processes

Objectives

• To introduce software process models

• To describe three generic process models and when they may be used

• To describe outline process models for requirements engineering, software

development, testing and evolution

• To explain the Rational Unified Process model

• To introduce CASE technology to support software process activities

1

Topics covered

• Software process models

• Process iteration

• Process activities

• The Rational Unified Process

• Computer-aided software engineering

2

The software process

• A structured set of activities required to develop a software system

– Specification;

– Design;

– Validation;

– Evolution.

• A software process model is an abstract representation of a process. It presents a

description of a process from some particular perspective.

3

Generic software process models

• The waterfall model

– Separate and distinct phases of specification and development.

• Evolutionary development

– Specification, development and validation are interleaved.

• Component-based software engineering

– The system is assembled from existing components.

• There are many variants of these models e.g. formal development where a

waterfall-like process is used but the specification is a formal specification that is

refined through several stages to an implementable design.

4

Waterfall model

• Requirements analysis and definition

• System and software design

• Implementation and unit testing

• Integration and system testing

• Operation and maintenance

• The main drawback of the waterfall model is the difficulty of accommodating

change after the process is underway. One phase has to be complete before

moving onto the next phase.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

5

Waterfall model problems

• Inflexible partitioning of the project into distinct stages makes it difficult to

respond to changing customer requirements.

• Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.

• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering projects where a

system is developed at several sites.

6

Evolutionary development

• Exploratory development

– Objective is to work with customers and to evolve a final system from an initial outline

specification. Should start with well-understood requirements and add new features as

proposed by the customer.

• Throw-away prototyping

– Objective is to understand the system requirements. Should start with poorly understood

requirements to clarify what is really needed.

Current activities Outputs

Outline
description

Specification

Development

Validation

Initial version

Intermediate
versions

Final version

Intermediate
versions

7

Evolutionary development

• Problems

– Lack of process visibility;

– Systems are often poorly structured;

– Special skills (e.g. in languages for rapid prototyping) may be required.

• Applicability

– For small or medium-size interactive systems;

– For parts of large systems (e.g. the user interface);

– For short-lifetime systems.

8

Component-based software engineering

• Based on systematic reuse where systems are integrated from existing

components or COTS (Commercial-off-the-shelf) systems.

• Process stages

• This approach is becoming increasingly used as component standards have

emerged.

9

Requirements
specification

Component
analysis

Requirements
modification

System design
with reuse

Development
and integration

System
validation

Process iteration

• System requirements ALWAYS evolve in the course of a project so process

iteration where earlier stages are reworked is always part of the process for large

systems.

• Iteration can be applied to any of the generic process models.

• Two (related) approaches

– Incremental delivery;

– Spiral development.

10

Incremental delivery

• Rather than deliver the system as a single delivery, the development and delivery

is broken down into increments with each increment delivering part of the

required functionality.

• User requirements are prioritised and the highest priority requirements are

included in early increments.

• Once the development of an increment is started, the requirements are frozen

though requirements for later increments can continue to evolve.

11

Define outline
requirements

Assign requirements
to increments

Design system
architecture

Integrate
increment

Validate
increment

Develop system
increment Validate system

System incomplete

Final system

Incremental development advantages

• Customer value can be delivered with each increment so system functionality is

available earlier.

• Early increments act as a prototype to help elicit requirements for later

increments.

• Lower risk of overall project failure.

• The highest priority system services tend to receive the most testing.

12

Spiral development

• Process is represented as a spiral rather than as a sequence of activities with

backtracking.

• Each loop in the spiral represents a phase in the process.

• No fixed phases such as specification or design - loops in the spiral are chosen

depending on what is required.

• Risks are explicitly assessed and resolved throughout the process.

13

Spiral model of the software process

14

Risk
analysis

Risk
analysis

Risk
analysis

Risk
anal ysis Pr oto-

type 1

Pr ototype 2

Pr ototype 3

Concept of
Operation S/W

r equir ements

R equir ement
v alida tion

Design
V&V

Pr oduct
design Detailed

design

Code

Unit test

Integ r a tion
test Acceptance

test Service De v elop , v erify
ne xt-le v el pr oduct

Evaluate alternatives,
 identify, resolve risks

Determine objectives,
alternatives and constraints

Plan ne xt phase

Integ r a tion
and test plan

De v elopment
plan

R equir ements plan
Life-cy cle plan

R EVI EW

Operational
prototype

Simulations, models, benchmarks

Spiral model sectors

• Objective setting

– Specific objectives for the phase are identified.

• Risk assessment and reduction

– Risks are assessed and activities put in place to reduce the key risks.

• Development and validation

– A development model for the system is chosen which can be any of the generic models.

• Planning

– The project is reviewed and the next phase of the spiral is planned.

15

Process activities

• Software specification

• Software design and implementation

• Software validation

• Software evolution

16

Software specification

• The process of establishing what services are required and the constraints on the

system’s operation and development.

• Requirements engineering process

– Feasibility study;

– Requirements elicitation and analysis;

– Requirements specification;

– Requirements validation.

17

The requirements engineering process

18

Feasibility report

Feasibility
study

Requirements
elicitation and

analysis

Requirements
specification

System models

Requirements
document

User and system
requirements

Requirements
validation

Software design and implementation

• The process of converting the system specification into an executable system.

• Software design

– Design a software structure that realises the specification;

• Implementation

– Translate this structure into an executable program;

• The activities of design and implementation are closely related and may be inter-

leaved.

19

The software design process

20

Design products

Design activities

Software
specification

Requirements
specification

Interface
specification

Data structure
specification

Component
specification

System
architecture

Algorithm
specification

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

Structured methods

• Systematic approaches to developing a software design.

• The design is usually documented as a set of graphical models.

• Possible models

– Object model;

– Sequence model;

– State transition model;

– Structural model;

– Data-flow model.

21

Programming and debugging

• Translating a design into a program and removing errors from that program.

• Programming is a personal activity - there is no generic programming process.

• Programmers carry out some program testing to discover faults in the program

and remove these faults in the debugging process.

22

Locate error Design error
repair Repair error Re-test

program

Software validation

• Verification and validation (V & V) is intended to show that a system conforms to

its specification and meets the requirements of the system customer.

• Involves checking and review processes and system testing.

• System testing involves executing the system with test cases that are derived from

the specification of the real data to be processed by the system.

23

Testing stages

• Component or unit testing

– Individual components are tested independently;

– Components may be functions or objects or coherent groupings of these entities.

• System testing

– Testing of the system as a whole. Testing of emergent properties is particularly important.

• Acceptance testing

– Testing with customer data to check that the system meets the customer’s needs.

24

Component
testing

System
testing

Acceptance
testing

Testing phases

25

System
integration test

plan

Sub-system
integration test

plan

Acceptance test
plan

Requirements
specification

System
specification System design Detailed

design

Module and
unit code and

test

Acceptance
test

System
integration test

Sub-system
integration test Service

Software evolution

• Software is inherently flexible and can change.

• As requirements change through changing business circumstances, the software

that supports the business must also evolve and change.

• Although there has been a demarcation between development and evolution

(maintenance) this is increasingly irrelevant as fewer and fewer systems are

completely new.

26

New system Existing systems

Define system
requirements

Asses existing
system

Propose system
changes Modify systems

The Rational Unified Process

• A modern process model derived from the work on the UML and associated

process.

• Normally described from 3 perspectives

– A dynamic perspective that shows phases over time;

– A static perspective that shows process activities;

– A practical perspective that suggests good practice.

27

RUP phases

• Inception

– Establish the business case for the system.

• Elaboration

– Develop an understanding of the problem domain and the system architecture.

• Construction

– System design, programming and testing.

• Transition

– Deploy the system in its operating environment.

28

RUP good practice

• Develop software iteratively

• Manage requirements

• Use component-based architectures

• Visually model software

• Verify software quality

• Control changes to software

29

Static workflows of RUP

30

Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and
change management

This supporting workflow managed changes to the system (see
Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

Key points

• Software processes are the activities involved in producing and evolving a

software system.

• Software process models are abstract representations of these processes.

• General activities are specification, design and implementation, validation and

evolution.

• Generic process models describe the organisation of software processes. Examples

include the waterfall model, evolutionary development and component-based

software engineering.

• Iterative process models describe the software process as a cycle of activities.

31

Key points

• Requirements engineering is the process of developing a software specification.

• Design and implementation processes transform the specification to an

executable program.

• Validation involves checking that the system meets to its specification and user

needs.

• Evolution is concerned with modifying the system after it is in use.

• The Rational Unified Process is a generic process model that separates activities

from phases.

32

	Software Processes
	Objectives
	Topics covered
	The software process
	Generic software process models
	Waterfall model
	Waterfall model problems
	Evolutionary development
	Evolutionary development
	Component-based software engineering
	Process iteration
	Incremental delivery
	Incremental development advantages
	Spiral development
	Spiral model of the software process
	Spiral model sectors
	Process activities
	Software specification
	The requirements engineering process
	Software design and implementation
	The software design process
	Structured methods
	Programming and debugging
	Software validation
	Testing stages
	Testing phases
	Software evolution
	The Rational Unified Process
	RUP phases
	RUP good practice
	Static workflows of RUP
	Key points
	Key points

