

Security Assessment Technique for SDN

김 그 린 greenkim@konkuk.ac.kr

Contents

- 1. Introduction
- 2. Security Analyses of SDN
- 3. Security Assessment Technique for SDN
 - 3.1 Taxonomy of issues
 - 3.2 Assessment technique
- 4. Case study of IMECA Security Assessment Technique
- 5. Conclusion
- 6. Future work

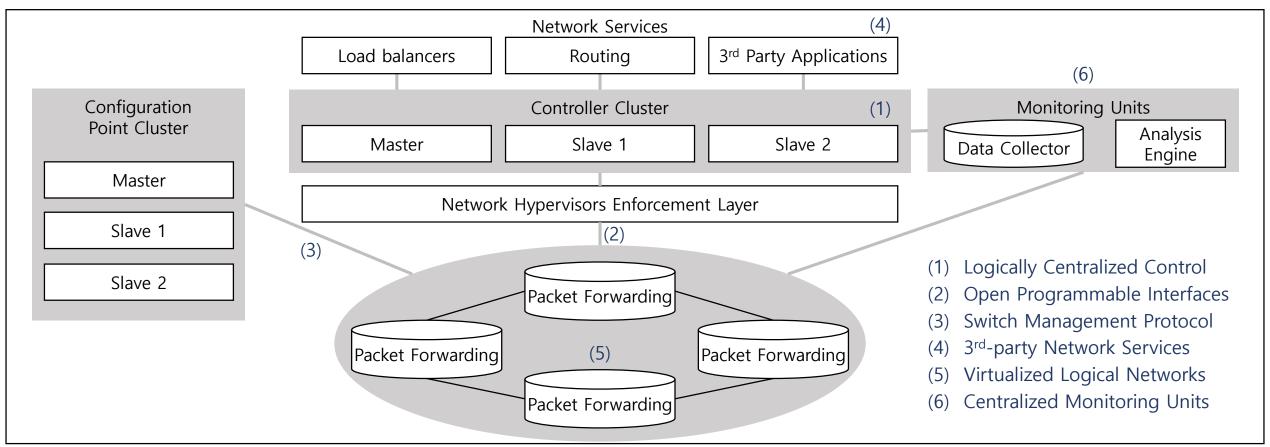
1. Introduction (1/2)

- SDN is rapidly moving from vision to reality
 - Host of SDN-enabled devices in development and production
 - The combination of separated **control** and **data plane functionality** and **programmability** in the network have found their commercial application in cloud computing and virtualization technology
- The SDN architecture can be exploited to enhance network security
 - Provision of highly reactive security monitoring, analysis and response time
 - The **central controller** is key to this system
 - Deploy traffic analysis or anomaly-detection

%SDN: Software Defined Networks

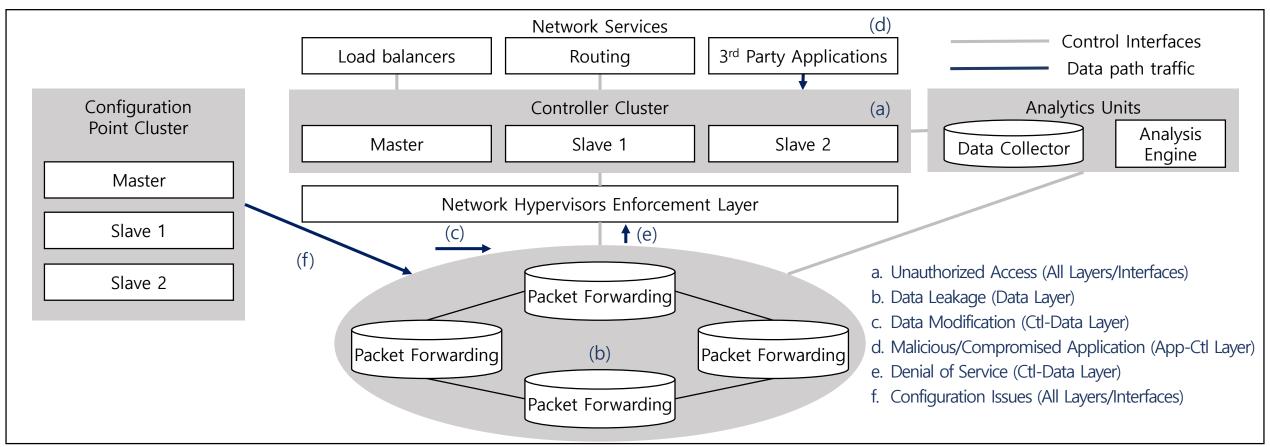
1. Introduction (2/2)

- However, the same attributes of centralized control and programmability associated with the SDN platform introduce network security challenges
 - An increased potential for Denial-of-Service attacks
 - Centralized controller and flow-table limitation in network device
 - Another issue of concern based on open programmability of the network is trust
 - Between applications and controllers
 - Between controllers and network devices
- An Assessment technique for SDN security is required


2. Security Analysis of SDN (1/4)

- The basic properties of a security communications network
 - Confidentiality
 - Integrity
 - Availability of information
 - Authentication
 - Non-repudiation
 - → Secure data, network assets and communications transactions

2. Security Analysis of SDN (2/4)


SDN Characteristics

2. Security Analysis of SDN (3/4)

SDN Potential Attack and Vulnerabilities

2. Security Analysis of SDN (4/4)

Categorization of Security Issues

Security Issue/Attack	SDN Layer Affected or Targeted						
Security Issue/Attack	Application Layer	App-Ctl Interface	Control Layer	Ctl-Data Interface	Data Layer		
Unauthorized Access e.g.Unauthorized Controller Access/Controller HijackingUnauthorized/Unauthenticated Application	X	X	X X	X	X		
Data Leakage e.g. • Flow Rule Discovery (Side Channel Attack on Input Buffer) • Credential Management (Keys, Certificates for each Logical Network) • Forwarding Policy Discovery (Packet Processing Timing Analysis)			X	X	X X X		
Data Modification e.g. • Flow Rule Modification to Modify Packets (Man-in-the-middle attack)			Х	Х	X		
Malicious/compromised Applications e.g. • Fraudulent Rule Insertion	X	Х	X				
Denial of Services e.g. • Controller-Switch Communication Flood • Switch Flow Table Flooding			X	X	X X		
Configuration Issues e.g. Lack of TLS(or other Authentication Technique) Adoption Policy Enforcement Lack of Secure Provisioning	X X X	X X X	X X X	X X	X X		
System Level SDN Security e.g. • Lack of Visibility of Network State			Х	Х	Х		

'SDN Security: A Survey', IEEE SDN for Future Networks and Services, 2013.

3. Security Assessment Technique for SDN

- 3.1 Taxonomy of issues
- 3.2 Assessment Technique

3.1 Taxonomy of issues (1/2)

- The key idea in security assessment is using process-product approach
 - In determining the possible problems, inconsistencies during process implementation and obtaining of the products
 - One of the fundamental concepts behind the idea of the approach is the concept of 'gap'
 - 'gap' could be defined as **a set of discrepancies** of any single process that can introduce some **anomalies** (e.g. **vulnerabilities**) in a product and/or cannot reveal (and eliminate) existing anomalies in a product

3.1 Taxonomy of issues (2/2)

 Process-Product approach Transforms owing to **Produces Product Process** Activity **Anomaly** Can be Can contain Discrepancy Vulnerability Other Can result in **Produces** Can introduce Other gap Intended **Functionality** Can be exploited by Can be Unintended Technique Tool Human **Functionality** Can introduce Can affect **Threat** Intrusion Can affect Other Attack

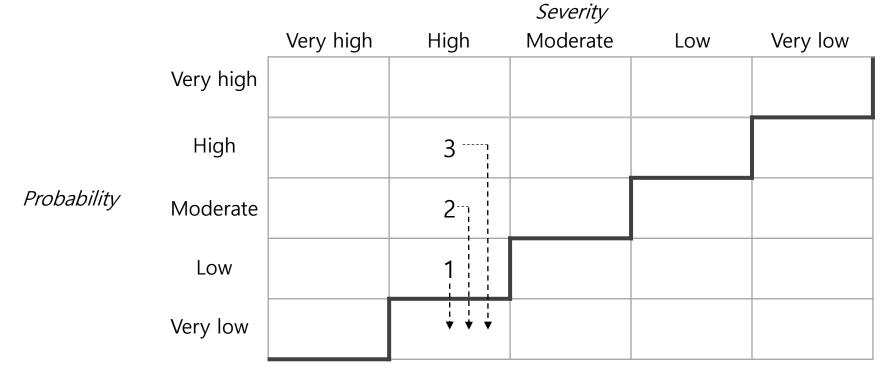
3.2 Assessment Technique

- Each 'gap' should be represented in a form of formal description
 - To perform the description, the most convenient is **IMECA** technique
 - Intrusion Modes and Effects Criticality Analysis
 - Modification to FMECA technique that takes into account possible intrusions into the system
 - During the Security Assessment, IMECA can be used in addition to standardized FMECA for **safety-related domains**
 - each **vulnerability** can become a **failure** in a case of **intrusion** into such systems
 - Each identified gap can be represented by a single local IMECA table and each discrepancy inside the gap can be represented by a single row in that local IMECA table

4. Case study of Security Assessment Technique (1/3)

- Based on Categorization of SDN Security Issues from 'SDN Security: A Survey', it is possible to choose several types of intrusions
 - Controller hijacking
 - Man-in-the-middle
 - Denial of Service
- Following table shows application of IMECA technique for analysis of theses intrusions

4. Case study of Security Assessment Technique (2/3)


Intrusion Modes and Effects Criticality Analysis

GAP No	Attack mode	Attack nature	Attack cause	Occurrence Probability	Effect Severity	Type of effects				
						Application Layer	App-Ctl Interface	Control Layer	Ctl-Data Interface	Data Layer
1	Controller hijacking	Active	Weak authentication	Low	High	-	-	Gain access to network resourceManipulate the network operation		
2	Main-in-the middle	Active	Weak AuthenticationWeak confidentiality	Moderate	High	-	-	 Have control over the entire system Insert/Modify flow rules in the network devices Allow packets to be steered through the network to the attacker's advantage 		
3	Denial of Service	Active	Weak protectionResource limitation of flow table	High	High	-	-	Lead to fraudulent rule insertion and r modification		ion and rule

4. Case study of Security Assessment Technique (3/3)

- Criticality matrix (Adapted from ISO 31000:2009)
 - Each of the numbers inside the matrix row number of IMECA table
 - Acceptable values of risks are below the diagonal

5. Conclusion

- A secure SDN does not exist
 - Hidden vulnerabilities are still possible in SDN
 - Security Assessment should be perceived as a repeatable process
- Assurance of SDN security is not possible without taking in to account all specific features of technologies in use
 - In addition to improving SDN, it is necessary to focus on developing rules and best practices that establish and maintain security of SDN

6. Future work

- Compare the IMECA Assessment technique with other methodology such as STRIDE
- Compare SDN Security between various Controllers
 - ONOS
 - OpenDaylight
 - ROSEMARY
 - Ryu
 - SE-Floodlight
- Research and Categorize Security solutions and SDN Security Enhancement
- Recommend Best Practices

References

- 1. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl Landwehr. "Basic Concepts and Taxonomy of Dependable and Secure Computing". Jan 2004.
- 2. M. Coughlin. "A Survey of SDN Security Research".
- 3. S. Scott-Hayward, S. Natarajan, S. Sezer "A Survey of Security in Software Defined Networks". Communications Surveys & Tutorials, IEEE, 2015.
- 4. S. Scott-Hayward, G. O'Callaghan and S. Sezer "SDN security: A survey", Future Networks and Services, IEEE, 2013.
- 5. R. Kloeti, "OpenFlow: A Security Analysis," Available: ftp://yosemite.ee.ethz.ch/pub/students/2012-HS/MA-2012-20- signed.pdf, 2013.
- 6. Kevin Benton, L. Jean Camp, Chris Small. "OpenFlow vulnerability assessment", Proceedings of the second ACM SIGCOMM workshop on Hot topics software defined networking. 2013.
- 7. Diego Kreutz, Fernando M. V. Ramos, Paulo Verssimo, "Towards secure and dependable software-defined networks", Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking. 2013.
- 8. A. Gorbenko, V. Kharchenko, O. Tarasyuk, A. Furmanov "F(I)MEA- technique of Web Services Analysis and Dependability Ensuring", Lecture Notes in Computer Science, 2006.
- 9. E. Babeshko, V. Kharchenko, A. Gorbenko, "Applying F(I)MEA-technique for SCADA-based Industrial Control Systems Dependability Assessment and Ensuring", DepCoS-RELCOMEX, 2008.
- 10. O. Illiashenko, V. Kharchenko, A. Kovalenko, "Cyber Security Lifecycle and Assessment Technique for FPGA-based I&C systems", Design & Test Symposium, 2013.
- 11. ISO/IEC 27000, Information technology-Security techniques-Information security management systems-Overview and vocabulary, International Organization for Standardization and International Electrotechnical Commission, 2009.
- 12. ISO/IEC 27001:2005, Information technology-Security techniques- Information security management systems-Requirements, International Organization for Standardization and International Electrotechnical Commission, 2005.
- 13. ISO/IEC 27002:2005, Information technology-Security techniques-Code of practice for information security management, International Organization for Standardization and International Electrotechnical Commission, 2005.
- 14. ISO 31000, Risk Management, Risk assessment techniques, International Organization for Standardization and International Electrotechnical Commission, 2009.

Thank You