

Agenda

 1. Microsoft Security Development Life-Cycle

 2. Kupe with security

 Overview
 1000 Plan and Elaboration (+Security)
 2000 Build (+with Security)

Microsoft Security

Development Life-Cycle
Kupe with security

Microsoft Security Development Life-Cycle

• Description

- 마이크로소프트의 보안 개발 방법에 대한 투명한 제공을 위해 제작된 보안 프로세스

- 연간 교육을 통해 매우 정교하며 실제로 MS R&D에서 개발 적용 중

- 모든 종류의 소프트웨어 개발 프로젝트 적용 가능

- 다양한 방법론 적용 가능
ex) WaterFall, Spiral, agile Development

1000 Plan and

Elaboration

-

-

1001 Define Draft Plan

1002 Create Preliminary

Investigation Report

1003 Define

Requirement

1004 Record Terms in

Glossary

1005 Implement

Prototype

1006 Define Business

Use Case

1007 Define Business

Concept Model

1008 Define Draft

System Architecture

1009 Define System

Test Case

1010 Refine Plan

2000 Build

-

2110 Revise Plan
2020 Synchronize

Artifacts
2030 Analyze

2031 Define Essential

Use Cases

2032 Refine Use Case

Diagrams

2033 Define Domain

Model

2034 Refine Glossary

2035 Define System

Sequence Diagrams

2036 Define Operation

Contracts

2037 Define State

Diagrams

2038 Refine System

Test Case

2039 Analyze (2030)

Traceability Analysis

2040 Design

2041 Define Real Use

Cases

2042 Define Reports, UI,

and Storyboards

2043 Refine System

Architecture

2044 Define Interaction

Diagrams

2045 Define Design

Class Diagrams

2046 Design

Traceability Analysis

2047 Define Database

Scheme

2050 Construct

2051 Implement Class

& Methods Definitions

2052 Implement

Windows

2053 Implement

Reports

2054 Implement DB

Schema(SQL, etc.)

2055 Write Unit Test

Code

2060 Test

2061 Unit Testing

2062 Integration

Testing

2063 System Testing

2064 Performance

Testing

2065 Acceptance

Testing

2066 Documentation

Testing

2067 Testing

Traceability Analysis

… 2n00 Cycle n

2n10 2n20 2n30

2n31

…

2n39

… 2n60

2n61

…

2n67

3000 Deployment

-

Extablish Security
Requirements

Create Quality
Gates/Bug Bars

Perform Security
Assessments

Establish Design
Requirements

Perform Attack
Surface Analysis and
Use Threat Modeling

Use Approved Tools

Deprecate Unsafe
Functions

Perform Static
Analysis

Define Considerations
of Dynamic Testing

for Security

Perform Fuzz Testing

Stage 1000. Plan and Elaboration

• Sec+ Stage 1000 Activities
 Addition of activities

 Addition of contents

Plan and
Elaboration

1000

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Define Business
Concept Model

1008

Perform Security
Risk Assessments

1011

Define
Draft Plan

1001

Record
Terms in Glossary

1004

Define
Business Use Case

1007

Create
Quality Gates / Bug Bars

1010

Define
Requirements

1003

Create Preliminary
Investigation Report

1006

Define
System Test Case

1009

Refine Plan
1012

수정

Create Preliminary
Investigation Report

1002 Define
Requirements

1003

• Description

- Write a requirement specification for a product

- Input : draft project plan, investigation report

- Output : a requirement specification

• What is a requirement? (IEEE Std610.12-1990) “

Activity 1003.
Define Requirements

• Functional requirements “

• Non-Functional requirements

- Constraints on the services or functions offered by the system as timing
constraints, constraints on the development process, standards, etc.

- Portability, Reliability, Usability, Efficiency(Space, Performance)

- Delivery, Implementation, Standards

- Ethical, Interoperability, Legislative(Safety, Privacy)

- Establish security requirements that consider best integrate security into the
development process and identify key security objectives

• Recommended reference : IEEE Std. 830-1998

Activity 1003. Define Requirements

• Steps

1. Gather all kinds of useful documents

2. Write an overview statement (objective and name of the system, etc.)

3. Determine customers who use the product

4. Write goals of the project

5. Identify system functions

• Functional requirements

• Add function references(such as R1.1, …) into the identified functions

• Categorize identified functions into Event, Hidden, and Frill

Activity 1003. Define Requirements

6. Identify system attributes

• Non-functional requirements

- Especially, security requirements

1. Identify the team or individual that tracks and manages security for
the product

2. Define minimum security criteria

3. Identify security requirements

4. Specify bug/work tracking tool

7. Identify other requirements (Optional)

• Assumptions, Risks, Glossary, etc.

Activity 1003. Define Requirements

• Description

- Define criteria of quality gates and bug bars to establish minimum acceptable
levels of security quality

- Improves the understanding of risks associated with security issues and enables
teams to identify and fix security bugs during development

- Input : investigation report, requirement specification, prototype, business use
case model

- Output : a quality gates/bug bars criteria

Activity 1010.
Create Quality Gates/Bug Bars

Perform Security
Risk Assessments

1011Create
Quality Gates/Bug Bars

1010

Activity 1010. Create Quality Gates/Bug Bars

• What is Quality Gates?

- Check quality for approaching levels of objective

- Depend on functions and approaches

- The term 'Quality Gate' is not used consistently and can be applied to:

• project management

• quality management

• risk management

• any combination of these three management disciplines

- Can be found in different software process models

• the V-Modell XT of the German federal administration

• Cooper's Stage-gate model

Activity 1010. Create Quality Gates/Bug Bars

• What are bug bars?

- A bug bar is a quality gate which is used to define the severity thresholds of
security vulnerabilities

- Used to define the severity thresholds of security vulnerabilities

- Vulnerabilities (security bugs values)

 Spoofing

 Tampering

 Repudiation

 Information Disclosure

 Denial of Service (DoS)

Activity 1010. Create Quality Gates/Bug Bars

Server

Critical

Elevation of privilege: The ability to either execute arbitrary code or obtain more privilege than authorized
 Remote anonymous user

 Examples:
 Unauthorized file system access: arbitrary writing to the file system
 Execution of arbitrary code
 SQL injection (that allows code execution)

 All write access violations (AV), exploitable read AVs, or integer overflows in remote anonymously callable code

Important

Non-default critical scenarios or cases where mitigations exist that can help prevent critical scenarios.
 Denial of service: Must be "easy to exploit" by sending a small amount of data or be otherwise quickly

induced Anonymous
 Persistent DoS

 Examples:
 Sending a single malicious TCP packet results in a Blue Screen of Death (BSoD)
 Sending a small number of packets that causes a service failure

 Temporary DoS with amplification
 Examples:

 Sending a small number of packets that causes the system to be unusable for a period of time
 A web server (like IIS) being down for a minute or longer
 A single remote client consuming all available resources (sessions, memory) on a server by

establishing sessions and keeping them open

Moderate

 Denial of serviceAnonymous
 Temporary DoS without amplification in a default/common install.

 Example:
 Multiple remote clients consuming all available resources (sessions, memory) on a server by

establishing sessions and keeping them open

Low

 Information disclosure (untargeted)
 Runtime information
 Example:

 Leak of random heap memory

- example of criteria for bug bars:

• Description

- identify functional aspects of the software that require deep review.

- include the following information:
 What portions of the project will require threat models before release.
 What portions of the project will require security design reviews before release.
 What portions of the project will require penetration testing (pen testing) by a

mutually agreed-upon group that is external to the project team. Any portion of the
project that requires pen testing must resolve issues identified during pen testing
before it is approved for release.

 Any additional testing or analysis requirements the security advisor deems necessary
to mitigate security risks.

 Clarification of the specific scope of fuzz testing requirements.

Activity 1011.
Perform Security Risk Assessments

Perform Security
Risk Assessments

1011Create
Quality Gates/Bug Bars

1010

- Input : investigation report, requirement specification, business use case model,
draft system architecture, quality gates/bug bars criteria

- Output : a security risk assessments report

• Steps

1. Risk identification

2. Risk analysis

3. Risk evaluation

• Recommended reference : ISO/IEC 31000, 27005

Activity 1011. Perform Security Risk Assessments

Risk evaluation

Risk identification

Risk analysis

Risk Assessment

Phase 2040. Design

• Sec+ Phase 2040 Activities
 Addition of activities

 Addition of contents

Design
2140

Establish Security
Design Requirements

2142

Perform Attack Surface
Analysis and Use Threat Modeling

2145

Design
Traceability Analysis

2148

Define
Real Use Cases

2141

Refine
System Architecture

2144

Define
Design Class Diagrams

2147

Define Reports, UI,
and Storyboards

2143

Define
Interaction Diagrams

2146

Define
Database Scheme

2149

• Description

- Consider security design requirements

- Input : intermediate deliverables

- Output : security design requirements specifications

Activity 2042.
Establish Security Design Requirements

Establish Security
Design Requirements

2142Define
Real Use Cases

2141 Define Reports, UI,
and Storyboards

2143

• What are design requirements?

- Describe security features that will be directly exposed to users

- Describe how to securely implement all functionality provided by a given feature
or function

Activity 2042.
Establish Security Design Requirements

• Steps

1. Creation of security design specifications

2. Review specification

• Validate design specifications against the application’s functional specification

• Functional specification

 Accurately and completely describe the intended use of a feature or function

 Describe how to deploy the feature or function in a secure fashion

3. Specify of minimal cryptographic design requirements

• SDL cryptographic requirements (at a high-level)

- Use AES for symmetric encryption/decryption

- Use RSA for asymmetric encryption/decryption and signatures

- Use 1024-bit or better RSA keys

- Use SHA-256 or better for hashing and message authentication codes

Activity 2042.
Establish Security Design Requirements

• Description

- Reducing the opportunities for attackers to exploit a potential weak spot or
vulnerability

• Analyze overall attack surface

• Includes disabling or restricting access to system services, applying the
principle of least privilege, and employing layered defenses wherever
possible

- Input : intermediate deliverables

- Output : attack surface analysis, threat model

Activity 2045.
perform Attack Surface Analysis and Threat Modeling

Perform Attack Surface
Analysis and Use Threat Modeling

2145Refine
System Architecture

2144 Define
Interaction Diagrams

2146

• What is attack surface?

- Risk by giving attackers opportunity to exploit a potential vulnerability

• Attack surface reduction encompasses the following:

- shutting off or restricting access to system services

- employing layered defenses wherever possible

- applying the principle of least privilege

• What is Threat Modeling?

- Systematic process used to identify threats and vulnerabilities in software

- Consider security issues at the component or application level

- Team exercise encompassing program/project managers, developers, and
testers

- Primary security analysis task

Activity 2045. perform Attack Surface Analysis, Threat Modeling

• Steps

1. Analysis attack surface

• Use Code Access Security (CAS) correctly

- When developing with managed code, use strong-named assemblies
and request minimal permission.

- When using strong-named assemblies, do not use APTCA (Allow
Partially Trusted Caller Attribute) unless the assembly was approved by a
security review.

• Manage firewall exceptions carefully

- Be logical and consistent when you make firewall exceptions

• Ensure your application runs correctly as a non-administrator

- following the requirement will enable teams to design and develop
their applications with a standard user in mind

- This will result in reducing attack surface exposed by applications,
increasing the security of the user and system

Activity 2045. perform Attack Surface Analysis, Threat Modeling

• Steps

2. Threat Modeling

1) Draw a diagram using DFDs(Data Flow Diagrams)

- Include processes, data stores, data flows, and trust boundaries

- Diagrams per scenario may be helpful

2) Identify threats

- Use STRIDE

- Get specific about threat manifestation

- Apply STRIDE threats to each element

Activity 2045. perform Attack Surface Analysis, Threat Modeling

3) Mitigation

- address or alleviate a problem

- Mitigation is the point of threat modeling (Design secure software)

- Ways to address threats

• Redesign to eliminate

• Apply standard mitigations

• Invent new mitigations (riskier)

• Accept vulnerability in design

3) Validation

- Validate threat models, quality of threats and mitigations

• Microsoft Threat Modeling Tool 2016

- address or alleviate

Activity 2045. perform Attack Surface Analysis, Threat Modeling

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

Diagram Elements from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

• People

• Other systems

• Microsoft.com

• Function call

• Network traffic

• Remote

Procedure Call

(RPC)

• DLLs

• EXEs

• COM object

• Components

• Services

• Web Services

• Assemblies

• Database

• File

• Registry

• Shared

Memory

• Queue / Stack

External

Entity
Process

Data

Flow Data Store

Trust Boundary

• Process boundary

• File system

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

Level 1 Diagram from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

SSDP

10

Remote
Castle
Service

9

SSDP
8

Castle
Service

8

Explorer
(or rundl132)

2

Local
User

1

Shacct
4

Set acct
info

Get acct
info

Get acct info

Set acct info

Feedback

Manage
Castle

Read
Castle info

Cache Castle
info

Get version
info

Set version
info Query other

Castle info

Publish this
Castle info

Join, leave,
Set users props

Query users props

Get machine
password

Set psswd

Manage
Castle

Feedback

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

Extracts from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

Threat Property we want

Spoofing Authentication

Tampering Integrity

Repudiation Nonrepudiation

Information Disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

Threat Spoofing

Property Authentication

Definition Impersonating something or

someone else

Example Pretending to be any of billg,

microsoft.com, or ntdll.dllS T R I D E

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

Standard Mitigations from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

Spoofing Authentication To authenticate principals:

• Cookie authentication

• Kerberos authentication
• PKI systems such as SSL/TLS and certificates
To authenticate code or data:
• Digital signatures

Tampering Integrity • Windows Vista Mandatory Integrity Controls
• ACLs
• Digital signatures

Repudiation Non Repudiation • Secure logging and auditing
• Digital Signatures

Information Disclosure Confidentiality • Encryption
• ACLS

Denial of Service Availability • ACLs
• Filtering
• Quotas

Elevation of Privilege Authorization • ACLs
• Group or role membership
• Privilege ownership
• Input validation

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

Sample Mitigation from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

• Mitigation #54, Rasterization Service performs the

following mitigation strategies:

1. OM is validated and checked by (component) before

being handed over to Rasterization Service

2. The resources are decoded and validated by interacting

subsystems, such as [foo], [bar], and [boop]

3. Rasterization ensures that if there are any resource

problems while loading and converting OM to raster

data, it returns a proper error code

4. Rasterization Service will be thoroughly fuzz tested

(Comment: Fuzzing isn’t a mitigation, but it’s a great thing to

plan as part 4)

• Steps

2. Threat Modeling

Activity 2045. perform Attack Surface Analysis, Threat Modeling

SSDP

10

Remote
Castle
Service

9

SSDP
8

Castle
Service

8

Explorer
(or rundl132)

2

Local
User

1

Shacct
4

Set acct
info

Get acct
info

Get acct info

Set acct info

Feedback

Manage
Castle

Read
Castle info

Cache Castle
info

Get version
info

Set version
info Query other

Castle info

Publish this
Castle info

Join, leave,
Set users props

Query users props

Get machine
password

Set psswd

Manage
Castle

Feedback

Level 1 Diagram from
“Introduction to Microsoft®
Security Development Lifecycle (SDL)
Threat Modeling”

• Description

- Design database, table, and records

- Map classes into tables

- Take account of security requirements

- Input : Design Class Diagram

- Output : A Database Schema

Activity 2049.
Define Database Scheme

Design
Traceability Analysis

2148 Define
Database Scheme

2149

• Steps

1. Map classes into tables

2. Map relationships between classes into relations between tables

3. Map attributes into fields of tables

4. Design Schema

Activity 2049. Define Database Scheme

Phase 2050. Construct

• Sec+ Phase 2050 Activities
 Addition of activities

 Addition of contents

Construct
2050

Deprecate
Unsafe Functions

2052

Implement
Reports

2055

Write
Unit Test Code

2058

Use
Approved Tools

2051

Implement
Windows

2054

Perform
Static Analysis

2057

Implement
Class & Methods

Definitions

2053

Implement
DB Schema (SQL, etc.)

2056

• Description

- Prepare to use approved tools and define their associated security checks

• Steps

1. Define a list of approved tools and their associated security checks

• Such as compiler/linker options and warnings

2. Publish the list

3. Approve the list

Activity 2051.
Use Approved Tools

Deprecate
Unsafe Functions

2052Use
Approved Tools

2051

• Description

- Analyze all functions and APIs that will be used in conjunction with a software
development project and prohibit those that are determined to be unsafe.

- Input : design class diagram, real use cases, interaction diagram

- Output : a list of unsafe functions and APIs, safer alternatives

Activity 2052.
Deprecate Unsafe Functions

Deprecate
Unsafe Functions

2052Use
Approved Tools

2051 Implement
Class & Methods
Definitions

2053

Activity 2052. Deprecate Unsafe Functions

- Examples of unsafe functions (overrun)

Function Replaces

strcpy StringCbCopy, StringCbCopyEx, StringCchCopy, StringCchCopyEx

strncpy StringCbCopyN, StringCbCopyNEx, StringCchCopyN, StringCchCopyNEx

strcat StringCbCat, StringCbCatEx, StringCchCat, StringCchCatEx

strncat StringCbCatN, StringCbCatNEx, StringCchCatN, StringCchCatNEx

gets StringCbGets, StringCbGetsEx, StringCchGets, StringCchGetsEx

• Information related to secure coding :

 OWASP Top 10 & Guideline of Secure coding(Ref)

Activity 2052. Deprecate Unsafe Functions

- Example of secure coding (Use of Hard-coded Password)

[Measure]
 Passwords hassing
 Strong user passwords

Activity 2052. Deprecate Unsafe Functions

- Example of secure coding (Use of Hard-coded Password)

[Measure]
 Passwords hassing
 Strong user passwords

Activity 2052. Deprecate Unsafe Functions

• Steps
1. Analyze functions and APIs
2. List and prohibit unsafe functions and APIs
3. Use header files, newer compilers, or code scanning tools to check code

(including legacy code where appropriate) for the existence of banned functions
4. Replace those banned functions with safer alternatives:

 New native C and C ++ code should not use banned versions of string buffer
handling functions.
(Check the “Setup check-in policies” task for information on how to ensure this.)

 Sections marked as shared in shipping binaries represent a security threat.
(Use properly secured dynamically created shared memory objects instead.)

 Ensure that the application domain group is granted only execute permissions on
your stored procedures.
(∴Do not grant any other permission on your database to any other user or group.)

 All web applications accessing databases should always use stored procedures.
(Do not use “exec @ sql” construct in your stored procedures.)

5. And perform secure coding

Activity 2052. Deprecate Unsafe Functions

• “

• Description

- Input : safer alternatives

Activity 2053.
Implement Class & Methods Definitions

Deprecate
Unsafe Functions

2052 Implement
Class & Methods

Definitions

2053

• “

• Description

- Input : safer alternatives

Activity 2054.
Implement Windows

Implement
Reports

2055Implement
Windows

2054

• Description

- Consider security risk such as SQL injection (cf. 2052)

- Input : safer alternatives

Activity 2056.
Implement DB Schema(SQL, etc.)

Implement
Reports

2055 Implement
DB Schema (SQL, etc.)

2056

• Description

- Static analysis of source code provides a scalable capability for security code
review and can help ensure that secure coding policies are being followed

- With human review or static code analysis tools

- Input : implements results

- Output : static code analysis results

Activity 2057.
Perform Static Code Analysis for Security

Write
Unit Test Code

2058Perform
Static Analysis

2057

Phase 2060. Test
• Sec+ Phase 2060 Activities

 Addition of activities

 Addition of contents

Test
2160

Unit Testing
2162

Performance
Testing

2165

Documentation
Testing

2168

Define Considerations
of Dynamic Testing
for Security

2161

System
Testing

2164

Acceptance
Testing

2167

Integration
Testing

2163

Fuzz Testing
2166

Testing
Traceability Analysis

2169

• Description

- Define considerations of the following activities for testing
- With dynamic testing tools
- Implementation tools can be found at:

Bounds checker : Memory error detection for Windows based applications.
Cenzic : publishes a line of dynamic application security tools that scans web

applications for security vulnerabilities.
ClearSQL : is a review and quality control and a code illustration tool for PL/SQL.
Domalloc : library for checking memory allocation and leaks. Software must be

recompiled, and all files must include the special C header file dmalloc.h.

- Input : implements results
- Output : considerations of dynamic testing

Activity 2061.
Define Considerations of Dynamic Testing for Security

Unit Testing
2162Define Considerations

of Dynamic Testing
for Security

2161

• Description

- unit testing is a software testing method by which individual units of source
code, sets of one or more computer program modules together with
associated control data, usage procedures, and operating procedures, are
tested to determine whether they are fit for use.

- Perform unit testing and identify the results of testing

- Perform with considerations of 2061

- Input : unit test code, implement results, considerations of dynamic testing

- Output : Unit testing results, reports

Activity 2062.
Unit Testing

Unit Testing
2162Define Considerations

of Dynamic Testing
for Security

2161 Integration
Testing

2163

Activity 2063.
Integration Testing

Unit Testing
2162 Integration

Testing

2163

• Description

- Integration testing is the phase in software testing in which individual
software modules are combined and tested as a group

- Perform with considerations of 2061

- Input : class & method definitions, considerations of dynamic testing

- Output : Integration testing results, reports

Activity 2064.
System Testing

Performance
Testing

2165System
Testing

2164

• Description

- System testing of software or hardware is testing conducted on a complete,
integrated system to evaluate the system's compliance with its specified
requirements

- Perform with considerations of 2061

- Input : implements results, system test plan and cases, considerations of dynamic
testing

- Output : System testing results, reports

• Description

- Performance testing is in general, a testing practice performed to determine
how a system performs in terms of responsiveness and stability under a
particular workload.

- Perform with considerations of 2061

- Input : Implements result (program), considerations of dynamic testing

- Output : Performance testing results, reports

Activity 2065.
Performance Testing

Performance
Testing

2165System
Testing

2164
Fuzz Testing

2166

Activity 2066.
Fuzz Testing

• Description

- A specialized form of dynamic testing used to induce program failure by
deliberately introducing malformed or random data to an application

- Perform with considerations of 2061

- Input : Implements result (program), considerations of dynamic testing

- Output : fuzz testing results, reports

Performance
Testing

2165
Fuzz Testing

2166

Activity 2066. Fuzz Testing

• What is a fuzz testing?

- By entering random data into the software, it means to detect the security
weakness of the software by inducing the systematic failure of the software.

- Useful tools:
 SDL Regex Fuzzer: A verification tool to help test regular expressions

for potential denial of service vulnerabilities.

 MiniFuzz: A basic testing tool designed to help detect code flaws that may
expose security vulnerabilities in file-handling code.

Activity 2066. Fuzz Testing

- Vulnerabilities can be detected :
 Buffer overflow
 Integer overflow
 Format string bug
 Race condition
 SQL injection
 XSS
 Remote command execution

- Example of Fuzz testing :

The following code can occur overflow

int size = red_ccr_size(packet);
buffer = (char*) malloc(size + 1);

Activity 2067.
Acceptance Testing

• Description
- Acceptance testing is a test conducted to determine if the requirements of a specification

or contract are met
- It is used to determine the final acceptance

- Especially, review requirements for attack surface

 Re-review threat models and attack surface measurement of a given application

 All security bugs identified in your project should be reviewed against the security bug
bar/quality criteria established for your project to:

 ensure you have met the criteria or

 understand the potential attack surface associated with any bugs granted exceptions

- Perform with considerations of 2061

Documentation
Testing

2168Acceptance
Testing

2167

- Input : requirements specification, system, considerations of dynamic testing

- Output : Acceptance testing results, reports

• Steps

1. Review that any design or implementation changes to the system have been
accounted for

2. Review any new attack vectors created as a result of the changes

3. Mitigate those attack vectors

Activity 2067. Acceptance Testing

References
 ISO/IEC 31000, 27005, Risk management
 SDL Process Guidance Version 5.2
 SDL Security Bug Bar (Sample), https://msdn.microsoft.com/en-

us/library/cc307404.aspx
 Microsoft SDL Threat Modeling, https://www.microsoft.com/en-

us/SDL/process/design.aspx
 Basic of Secure Design, Development and Test,

https://www.microsoft.com/en-us/SDL/process/verification.aspx
 소프트웨어 개발보안 가이드 2013.11,

https://www.kisa.or.kr/public/laws/laws3_View.jsp?mode=view&p_No=259&b_No=25
9&d_No=56&ST=T&SV=

https://msdn.microsoft.com/en-us/library/cc307404.aspx
https://www.microsoft.com/en-us/SDL/process/design.aspx
https://www.microsoft.com/en-us/SDL/process/verification.aspx
https://www.kisa.or.kr/public/laws/laws3_View.jsp?mode=view&p_No=259&b_No=259&d_No=56&ST=T&SV

References
 IEEE Standard Glossary of Software Engineering Terminology,

IEEE Std610.12-1990
 IEEE Recommended Practice for Software Requirements

Specifications, IEEE Std. 830-1998
 Microsoft : Security development lifecycle,

https://www.microsoft.com/en-us/sdl/
 Wiki, https://www.wikipedia.org/
 OWASP top 10 & Secure coding, https://www.owasp.org
 Secure Coding Practices Quick Reference Guide,

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_
Guide_v2.pdf

https://www.microsoft.com/en-us/sdl/
https://www.wikipedia.org/
https://www.owasp.org/
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

Thank you 

