
9. Requirements Validation

Requirements Engineering Process

263

264

Verification and Validation in SDLC

• Validation: “Does the software system meets the user's real needs?”
– Are we building the right software?
– Does our design meet the spec?
– Does our implementation meet the spec?
– Does the delivered system do what we said it would do?
– Are our requirements models consistent with one another?

• Verification: “Does the software system meets the requirements specifications?”
– Are we building the software right?
– Does our problem statement accurately capture the real problem?
– Did we account for the needs of all the stakeholders?

265

V&V Depends on the Specification

• Unverifiable (but validatable) specification: “If a user presses a request
button at floor i, an available elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an
available elevator must arrive at floor i within 30 seconds“

266

1 2 3 4 5 6 7 8

V-Model of V&V Activities in SDLC

267

V&V for Requirements Models

• Verification
– “Is the model well-formed?”
– “Are the parts of the model consistent with one another?”

• Validation:
– Animation of the model on small examples is possible.
– ‘What if’ questions:

• Reasoning about the consequences of particular requirements;
• Reasoning about the effect of possible changes
• “Will the system ever do the following,”

– State exploration
• E.g., use model checking to find traces that satisfy some property

• Generation techniques for requirements validation
– Prototyping (Simulation)
– Test-case generation
– Review

268

Reviews, Walkthroughs, Inspections

• Management Reviews
– Preliminary design review (PDR), critical design review (CDR), formal technical

review (FTR), formal business review (FBR), etc.
– Used to provide confidence that the design is sound
– Attended by management and sponsors (customers)

• Walkthroughs
– Developer technique (usually informal)
– Used by development teams to improve quality of product
– Focusing on finding defects

• (Fagan) Inspections
– A process management tool
– Used to improve quality of the development process
– Collect defect data to analyze the quality of the process
– Written output is important

269

270

10. Requirements Change Management

Requirements Engineering Process

272

Requirements Change Management

Laws of Program Evolution

• Continuing Change
– Any software that reflects some external reality undergoes continual change or

becomes progressively less useful
• Change continues until it is judged more cost effective to replace the system

• Increasing Complexity
– As software evolves, its complexity increases

• Fundamental Law of Program Evolution
– Software evolution is self-regulating

• With statistically determinable trends and invariants

• Conservation of Organizational Stability
– During the active life of a software system, the work output of a development

project is roughly constant, regardless of resources

• Conservation of Familiarity
– The amount of change in successive releases is roughly constant

273

• Davis’s model(1988):
– User needs evolve continuously

• May not be linear or continuous (hence
no scale shown)

– Traditional development always lags
behind needs growth
• First release implements only part of

the original requirements
• Functional enhancement adds new

functionality
• Eventually, further enhancement

becomes too costly, and a replacement
is planned

• The replacement also only implements
part of its requirements,

• and so on...

274

Requirements Growth Model

Software Aging

• Causes of Software Aging
– Failure to update the software to meet changing needs

• Customers switch to a new product, if benefits outweigh switching costs
– Changes to software tend to reduce its coherence

• Costs of Software Aging
– Owners of aging software find it hard to keep up with the marketplace
– Deterioration in space/time performance due to deteriorating structure
– Aging software gets more buggy

• Each “bug fix” introduces more errors than it fixes

• Ways of Increasing longevity
– Design for change

• Design patterns
• Architecture styles

– Document the software carefully
– Requirements and designs should be reviewed by those responsible for its

maintenance
– Software Rejuvenation

275

Software Maintenance

• Maintenance philosophies
– “Throw-it-over-the-wall” : someone else is responsible for maintenance

• Investment in knowledge and experience is lost
• Maintenance becomes a reverse engineering challenge

– “Mission orientation” : development team make a long term commitment to
maintaining/enhancing the software

• Basili’s maintenance process models:
– Quick-fix model

• Changes made at the code level, as easily as possible
• Rapidly degrades the structure of the software

– Iterative enhancement model
• Changes made based on an analysis of the existing system
• Attempts to control complexity and maintain good design

– Full-reuse model
• Starts with requirements for the new system, reusing as much as possible
• Needs a mature reuse culture to be successful

276

Managing Requirements Change

• Managers need to respond to requirements change
– Adding new requirements during development
– Modifying requirements during development
– Removing requirements during development

• Key techniques
– Change Management (Process)
– Release Planning
– Requirements Prioritization
– Requirements Traceability
– Architectural Stability

277

Change Management

• Configuration Management
– Each distinct product is a Configuration Item (CI)
– Each configuration item is placed under version control
– Control which version of each CI belongs to which build of the system

• Baseline
– A stable version of a document or system

• Safe to share among the team
– Formal approval process for changes should be incorporated into the next

baseline

278

Change Management Process

• Change Management Process
– All proposed changes are submitted formally as change requests
– A review board reviews these periodically and decides which to accept

279

Requirements Traceability

• From IEEE-STD-830.1998:
– Backward traceability

• To previous stages of development
• The origin of each requirement should be clear

– Forward traceability
• To all documents spawned by the SRS
• Facilitation of referencing of each requirement in future documentation

• From DOD-STD-2167A:
– A requirements specification is traceable if:

1) It contains or implements all applicable stipulations in predecessor document
2) A given term, acronym, or abbreviation means the same thing in all documents
3) A given item or concept is referred to by the same name in the documents
4) All material in the successor document has its basis in the predecessor document, that

is, no untraceable material has been introduced
5) The two documents do not contradict one another

280

Importance of Traceability

• Verification and Validation
– Assessing adequacy of test suite
– Assessing conformance to requirements
– Assessing completeness, consistency and impact analysis
– Investigating high level behavior impact on detailed specifications
– Detecting requirements conflicts
– Checking consistency of decision making across the lifecycle

• Maintenance
– Assessing change requests
– Tracing design rationale

• Document access
– Ability to find information quickly in large documents

• Process visibility
– Ability to see how the software was developed
– Provides an audit trail

• Management
– Change management
– Risk management
– Control of the development process

281

Traceability Difficulties

• Cost
– Very little automated support
– Full traceability is very expensive and time-consuming

• Delayed gratification
– The people defining traceability links are not the people who benefit from it

• Development vs. V&V
– Much of the benefit comes late in the lifecycle

• Testing, integration, maintenance

• Size and diversity
– Huge range of different document types, tools, decisions and responsibilities
– No common schema exists for classifying and cataloging these
– In practice, traceability concentrates only on baselined requirements

282

Traceability in Practice

• Coverage
– Forward: Links from requirements forward to designs, code, test cases,
– Backward: Links back from designs, code, test cases to requirements
– links between requirements at different levels

• Traceability process
– Assign each sentence or paragraph a unique id number
– Manually identify linkages
– Use manual tables to record linkages in a document
– Use a traceability tool (database) for project wide traceability
– Tool then offers ability to

• Follow links
• Find missing links
• Measure overall traceability

283

Example : Requirements Traceability

• When a high level artifact derives a refined artifact, Traceability link should
be generated between two artifacts.

284

Traceability Link Example: An ATM System

• Using Use Case
– For a use case, finding participating class based on categorization of application

classes (boundary, control, entity)

285

Dispenser Cashier
Interface

withdrawal Account

Withdraw cashWithdraw cash

Use-case model Analysis model

<<trace>>

boundary

control

entity

• Each use case derives a participating analysis case.

286

Use-case model

Withdraw cash

inquiry cash

transfer cash

deposit cash

Dispenser

Cashier
Interface

withdrawal

Account

Cash
receptor

inquiry

transfer

deposit

Analysis model

= + + +

• Tracing the link using DOORS (Use case to analysis model)

287

소프트웨어 요구사항 명세서

소프트웨어 요구사항 명세서의 해당 Use Case 절을
해당되는 분석클래스와 연결한다.

Traceability explorer 를 통해
연계상황을 확인할 수 있다.

분석 클래스 명세서

• Analysis class derives design class in design model.

288

Withdraw cash

Use-case model Analysis model
<<trace>>

Design model

Withdraw cash Withdraw cash

Cashier
Interface

dispenser withdrawal Account

display

keypad

Card
reader

Dispenser
sensor

Dispenser
feeder

Cash
counter

withdrawal

Transaction
manager

Account

Persistent
class

Accounting
manager

Client
manager

<<trace>>

<<trace>><<trace>> <<trace>> <<trace>>

Design
model

Analysis
model

Active
class

General
class

Present process that organize
the work of other classes when
the system is distributed

Present general class

• Tracing the link using DOORS (Analysis model to design model)

289

분석모델명세서의 해당 클래스와
디자인명세서의 해당 클래스를 연결한다.

Traceability explorer 를 통해
연계상황을 확인할 수 있다.

분석모델 명세서

디자인모델 명세서

• Design classes derive components in implementation model.

290

Dispenser
sensor

Dispenser
feeder

Cash
counter

Client
manager <<executable>>

Client. exe

<<file>>
Client.c

<<file>>
dispenser.c

<< trace>>

<< trace>>

<< trace>>

<< trace>>

<< compilation>>

<< compilation>>

Design model Implementation model

Withdraw cash

Use-case model Analysis model
<<trace>>

Design model

Withdraw cash Withdraw cash

<<trace>>

Implementation
model

Partial implementation model from design model

• Traceability link in DOORS

291

Feature

Use Case

Analysis model

Design model

<<trace>>

<<trace>>

<<trace>>

• Set links between the requirements - manually

292

연계설정을 원하는
2개의 모듈을 Open 한 뒤 연결

Link module을 이용한 연결

초기요구사항 명세서에 있는
feature

소프트웨어 요구사항 명세서에 있는
Use Case

초기요구사항 명세서 (열)

소프트웨어
요구사항

명세서 (행)

• View relationships (Traceability column)

293

초기요구사항 명세서의
Features

Out link 로 연결된
Use Case,
Analysis Class,
Design Class 들

Depth of link

• View relationships (Traceability Explorer)

294

“display” class 와 연관된
Use Case 6개, Feature 4개가
존재함을 확인할 수 있다

• IBM Rational DOORS • ESG PRACTICA RM+

295

Requirements Management Tools

평가판 사용 가능 X

• OSRMT • JFeatures

296

Requirements Management Tools

297

