9. Requirements Validation

Requirements Engineering Process

Feasil;ilii]r) E“fq“""":‘z:‘“d\
SHCY Analysis

| (Requirements
v Specification }
Feasibility Requirements
Report Validation
System
Models ¥
User and System
Requirements
L

|

Requirements
Document

DABLE SOFTWARE 2 6 3

LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 64
LABORATORY

]}EPEN

KU sy

Verification and Validation in SDLC

» Validation: “Does the software system meets the user's real needs?”
Are we building the right software?
Does our design meet the spec?
Does our implementation meet the spec?

Does the delivered system do what we said it would do?
Are our requirements models consistent with one another?

» Verification: “Does the software system meets the requirements specifications?”
— Are we building the software right?
— Does our problem statement accurately capture the real problem?
Did we account for the needs of all the stakeholders?

LABORATORY

DABLE SOFTWARE

SW
= -
\/ \/
Validation Verification

265

l{ l] KONKUK
UNIVERSITY

V&V Depends on the Specification

- Unverifiable (but validatable) specification: “If a user presses a request
button at floor i, an available elevator must arrive at floor i soon.”

« \Verifiable specification: “If a user presses a request button at floor i, an
available elevator must arrive at floor i within 30 seconds®

1234AS678

8

EPENDABLE SO ARE 2 6 6
LABORATO!

o

l{ l] KONKUK
UNIVERSITY

V-Model of V&V Activities in SDLC

Actual Needs and < i
Delivered
Constraints ’; ' User Acceptance (alpha, beta test) Package
System
System System Test Integration
Specifications %
\._l Analysis / Review
Subsystem /I .
Design/Specs \I Integration Test Subsystem
/_
\1 Analysis / Review
Unit/ q
Unit /
s Con;lp;g::'lsents \ Module Test Components
i 4 wf
\ User review of external behavior as it is determined or

becomes visible

Verification

Validation

267

EPENDABLE SOFTWARE
LABORATORY

KU wovessmy

V&YV for Requirements Models

» Verification
— “Is the model well-formed?”
— ““Are the parts of the model consistent with one another?”

« Validation:
— Animation of the model on small examples is possible.

— ‘What if’ questions:
» Reasoning about the consequences of particular requirements;
» Reasoning about the effect of possible changes
* “Will the system ever do the following,”

— State exploration
+ E.g., use model checking to find traces that satisfy some property

» Generation techniques for requirements validation
— Prototyping (Simulation)
— Test-case generation
— Review

() DEPENDABLE SOFTWARE 268
'y LABORATORY

Reviews, Walkthroughs, Inspections

- Management Reviews

— Preliminary design review (PDR), critical design review (CDR), formal technical
review (FTR), formal business review (FBR), etc.

— Used to provide confidence that the design is sound
— Attended by management and sponsors (customers)

 Walkthroughs

— Developer technique (usually informal)
— Used by development teams to improve quality of product
— Focusing on finding defects

« (Fagan) Inspections

— A process management tool

— Used to improve quality of the development process

— Collect defect data to analyze the quality of the process
— Written output is important

EPENDABLE SOFTWARE 2 69
BOR.

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 7 O
LABORATORY

10. Requirements Change Management

KU vavemsmy

Requirements Engineering Process

(Fe;sil:lility) FoquEsmens 3
ey g Analysis 4

[r— Requirements)

¥ <5peciﬁcatiun

Feasibility | Requirements
Report Validation '
' System
Models '
' User and System
Requirements
Y

Y

Requirements
Document

—

*Requirements Change Management

EPENDABLE SOFTWARE 2 7 2
LABORATORY

Laws of Program Evolution

Continuing Change

— Any software that reflects some external reality undergoes continual change or
becomes progressively less useful
+ Change continues until it is judged more cost effective to replace the system

* Increasing Complexity
— As software evolves, its complexity increases

 Fundamental Law of Program Evolution

— Software evolution is self-regulating
* With statistically determinable trends and invariants

« Conservation of Organizational Stability

— During the active life of a software system, the work output of a development
project is roughly constant, regardless of resources

« Conservation of Familiarity
— The amount of change in successive releases is roughly constant

PENDABLE SOFTWARE
LABORATORY

Requirements Growth Model

« Davis’s model(19ss):

— User needs evolve continuously
* May not be linear or continuous (hence

KU KONKUK
UNIVERSITY

conventional

no scale shown) -4 development
=
— Traditional development always lags S e nezds

behind needs growth % ~--Inapppdpriateness
* First release implements only part of ug_

the original requirements _ pagiedinned)
* Functional enhancement adds new Sh‘_’r i

functionality Lot ol Adaptability
» Eventually, further enhancement | = e ¥ (slope of line)

becomes too costly, and a replacement LO"QBV'*Y

is planned

H—I

 The replacement also only implements J J 05 5 T'me

part of its requirements, &(qp (q,\vP q}{& (Q‘:be q}\\

>
« and so on... &\,d“‘q’ & o &é‘b&@“‘(\ é\o@@
.\600 a..(\‘(\ g\(q—’w (oﬁ\ G}\\(\

EPENDABLE SOFTWARE
LABORATORY

274

Software Aging

« Causes of Software Aging

— Failure to update the software to meet changing needs
» Customers switch to a new product, if benefits outweigh switching costs

— Changes to software tend to reduce its coherence

« Costs of Software Aging
— Owners of aging software find it hard to keep up with the marketplace
— Deterioration in space/time performance due to deteriorating structure

— Aging software gets more buggy
» Each “bug fix” introduces more errors than it fixes

« Ways of Increasing longevity

— Design for change
* Design patterns
» Architecture styles

— Document the software carefully

— Requirements and designs should be reviewed by those responsible for its
maintenance

— Software Rejuvenation

PENDABLE SOFTWARE
LABORATORY

Software Maintenance

» Maintenance philosophies

— “Throw-it-over-the-wall” : someone else is responsible for maintenance
* Investment in knowledge and experience is lost
* Maintenance becomes a reverse engineering challenge

— “Mission orientation” : development team make a long term commitment to
maintaining/enhancing the software

« Basili’s maintenance process models:

— Quick-fix model
+ Changes made at the code level, as easily as possible
» Rapidly degrades the structure of the software
— Iterative enhancement model
+ Changes made based on an analysis of the existing system
« Attempts to control complexity and maintain good design
— Full-reuse model
+ Starts with requirements for the new system, reusing as much as possible
* Needs a mature reuse culture to be successful

S‘ ' DEPENDABLE SOFTWARE 2 7 6

LABORATORY

Managing Requirements Change

« Managers need to respond to requirements change
— Adding new requirements during development
— Modifying requirements during development

Removing requirements during development

* Key techniques

Change Management (Process)
Release Planning
Requirements Prioritization
Requirements Traceability
Architectural Stability

277

Change Management

« Configuration Management
— Each distinct product is a Configuration ltem (ClI)
— Each configuration item is placed under version control
— Control which version of each CI belongs to which build of the system

 Baseline
— A stable version of a document or system
+ Safe to share among the team

— Formal approval process for changes should be incorporated into the next
baseline

EPENDABLE SOFTWARE

LABORATORY

KU

KONKUK
UNIVERSITY

278

Change Management Process

« Change Management Process
— All proposed changes are submitted formally as change requests
— Areview board reviews these periodically and decides which to accept

l Originator submitted an issue

Submitted

l Evaluator performed impact analysis

Evaluated notto makethe , Rejected
change

l CCB decide to make the change

—— Approved change was canceled

Verification failed
1 Modifier has made the change and

requested verification

change was v
____ Change Made ————or7 » Canceled

LS

l Verifier has confirmed the change

No verification required; .
modifier has installed Verified change was canceled

product

l Modifier has installed product

L, Closed

5 o)
J - DEPENDABLE SOFTWARE 2 7 9
\ LABORATORY

Requirements Traceability

* From IEEE-STD-830.1998:

— Backward traceability
» To previous stages of development
» The origin of each requirement should be clear

— Forward traceability
» To all documents spawned by the SRS
» Facilitation of referencing of each requirement in future documentation

« From DOD-STD-2167A:

— Arequirements specification is traceable if:
1) It contains or implements all applicable stipulations in predecessor document
2) Agiven term, acronym, or abbreviation means the same thing in all documents
3) Agiven item or concept is referred to by the same name in the documents

4) All material in the successor document has its basis in the predecessor document, that
IS, no untraceable material has been introduced

5) The two documents do not contradict one another

S DEPENDABLE SOFTWARE 2 80

LABORATORY

|

Importance of Traceability

Verification and Validation
— Assessing adequacy of test suite
— Assessing conformance to requirements
— Assessing completeness, consistency and impact analysis
— Investigating high level behavior impact on detailed specifications
— Detecting requirements conflicts
— Checking consistency of decision making across the lifecycle

* Maintenance
— Assessing change requests
— Tracing design rationale

« Document access
— Ability to find information quickly in large documents

* Process visibility
— Ability to see how the software was developed
— Provides an audit trail

« Management
— Change management
— Risk management
— Control of the development process

DEPENDABLE SOFTWARE
LABORATORY

Traceability Difficulties

« Cost
— Very little automated support
— Full traceability is very expensive and time-consuming

« Delayed gratification

— The people defining traceability links are not the people who benefit from it
» Development vs. V&V

— Much of the benefit comes late in the lifecycle
+ Testing, integration, maintenance

» Size and diversity
— Huge range of different document types, tools, decisions and responsibilities
— No common schema exists for classifying and cataloging these
— In practice, traceability concentrates only on baselined requirements

EPENDABLE SOFTWARE

LABORATORY

KU

KONKUK
UNIVERSITY

282

Traceability in Practice

« Coverage

Forward: Links from requirements forward to designs, code, test cases,
Backward: Links back from designs, code, test cases to requirements
links between requirements at different levels

« Traceability process

EPENDABLE SOFTWARE

Assign each sentence or paragraph a unique id number
Manually identify linkages
Use manual tables to record linkages in a document
Use a traceability tool (database) for project wide traceability
Tool then offers ability to

* Follow links

* Find missing links

* Measure overall traceability

283

Example : Requirements Traceability

« When a high level artifact derives a refined artifact, Traceability link should
be generated between two artifacts.

User needs

Product space
(Set of all legal behaviors)

Actual product’s
behavior

Architecture/data flow

Module specifications

Algorithms/code

EPENDABLE SOFTWARE

Needs

< <trace>> 1‘
1

Features

< <trace>> 4
1

Software
Requirements

A
<<trace>> 1
1

Analysis model
Or architecture model

<<trace>> T

Design model

<<trace>> |

Implementation
model

<<trace>>

Test Case

284

K

Traceability Link Example: An ATM System

 Using Use Case

— For a use case, finding participating class based on categorization of application
classes (boundary, control, entity)

Use-case model Analysis model
<<trace>>
S }—Q boundary
Withdraw cash Withdraw cash

@ control
OO O O O o

Dispenser Cashier withdrawal Account
Interface

DEPENDABLE SOFTWARE 2 8 5
LABORATORY

l{ l I KONKUK
UNIVERSITY

« [Each use case derives a participating analysis case.

Use-case model

Withdraw cash

%/Q

nquiry cash

«mm»

transfer cash

@

deposit cash

EPENDABLE SOFTWARE
LABORATORY

%/

Analysis model

W|thdraw I

Dlspense/
|_.:"‘=-\ .::=~‘I
R |an|ry)
Cashle / Account
Interface

[”] transfer
Cash ([[m]}

286

o Tracing the link using DOORS (Use case to analysis model)

ESH 2 e e z =R
[Standard view = |[Alevels > 3ac 7 i B
S SEEAUE AT D
;i %me g Traceability Explorer - /ATM example/System Defi
& Iﬂxr Lo File View
SRR AR el s g @2re e sA0sEs =4 oEn o nieeeo A, £F 88 002a
ATV A SRI] EEE S @ 3220 A Y
- & 2(withdraw) @ 3122012 CHOi0 22
- E3(deposit) 428 1 & 3.1.01
- Utrancton @ 32 2AH0A ZH
- Z(inquiry 425 olfl =@ 321 UC_DO0N: Withdraw cash
- 5E 4 EH2Check val E @ 431 Account
ok @ 4.2.1: Withdrawal
-@» 41,2 Cashier Interface
A @ 41 1: Dispeser
R =] B @320, a2
321 UC_UDUI:‘Wi\hd bk @ 3.2.1.0-2 DA0| ATM SELE TR HTHH 2 SE0RNE £5 S0
% 3.22 0 002 : Depe @ @ 32103 20ME 58
+ 8.23 UC_0003 ! trans| @ i 13 J|esE
e cl | el Y @ 32105 2 SAHIIAS D20 ATMH FIS8 30 91 53 HE
+ 3,2,6 UC_D00E : repol @32 1, ATME DM2| RFAS HPIE1| 5 ‘Check validity' &
w4 oHIDIEE ETAE 43 |1 @2 DU0 YOGS 7122 READL HIZHZ S240/ o
@ 321.0-8 02 ATME MERHHH 2 B3 QEETS SHELL,
34 e ® 32109 ClmS S ETS 012 YEE SUE M YD
@32
s . ®321.0-10 MBI JIEIS NEpio NEN AT PEnEs S
= @ 32.1.0-12 03 MERE ATMO D228 ©
pcil @ 321013 aiETs 2HE 13 DDA
437 a7 Aad ATRAZ T2 THIHMH WS THHH SHETE b
< s
; . . proEm
lssmama: shohol Exclusive sdit made
— L~
AIITEQS QA ASE H M A
—t e — T o O
Ll 1

EPENDABLE SOFTWARE
LABORATORY

.I

Miew
& X R

[Standard viaw

L2ZEY 0 27
fSEl= =S L2 HFstL}.

Traceability explorer
o A AtEHS 3HOIEH 4

lnsert Link Analysis

=1 (Al Teveis =] e

HM M| s Use Case =

Tl VR w R

c & FAMIA

Muju

[

T55 Dotz _depont

4.2.3 transfer
27) uw

238 tansfer FHOI22] activity @ ZASHE ATE UL CLABH L w2y

28 @ sq014
240 UCDO3_wansfer

41 424 inqury
24z () @2

iy 5278

o actvity § TSI AWE Y

iy
2a5 4.3 AE| L] Z el 2(Entity class)
247 4.3.1 Account

(PR L]
shgt Aol
@z

auE A, B

UC001_witihcr=w

Ucooz Depasit

U0 _Transfer

LEDaa_tneainy

255 LcooS_check validiy

Clolol el

ATM Giol o2 Mad Bols Tholoi 2 WS ofbulsh ek

withdrawal ™

Dispenser

o Zmww e Tus

ws =auUnh

287

Analysis class derives design class in design model.

[]
Use-case model Analysis model Design model
O <<trace>> T <<trace>> 7
------------------------- o e R)
. s ® — .\ ————————] -, .\ ________)
Withdraw cash |, . = Withdraw cash ' =~~~ Withdraw cash
. . / o \ .
a " - " \ ..
- - : : i : @ g ? =~ "
L]
Analysis
Cashier dispenser withdrawal Account
model Interface > A » &>
- "“\\ S~o g - - \\ ,I \\“ 7 - ‘\\
-~ <<trace>> UL <<trace>> <<trace>> < <<trace‘>>
: o Dispenser |/ "---. " VN
; display L ‘ . RN Account VN
Design Q . sensor | Client withdrawal | ™ N
model S —~ .' manager Persisteri,
keypad :' Dispenser | ! d \ class
; feeder -— !
Card | Casn | Transaction Accounting
manager
reader counter g manager
Active Present process that organize General Present general class
class the work of other classes when class
the system is distributed
288

J

DEPENDABLE SOFTWARE

LABORATORY

* Tracing the link using DOORS (Analysis model to design model)

% ¥ X v = E,
|Standard view x| [Alllevels =]
it = F,'_kIEEIII:I:Ik"A-IOI -5H|:|- E.EHAQI-
o B EHE ATV Susts = = O — o = —_—
- 2 BIEY i bl |
CIXIQIH A AS] Szt S2HAS 1Bt
=324 SHA ER 207 1) Ed == -_ b
- B EAHHAME 24 2 = @ 30-5 32 2EE S ~(Control Class) -
gﬂ g;-“. §E|H¢ EaEroﬂ 208 2 FHIW2 @ 3.0-6: Control classE 3Lt 5 2% RAH0|22 WS WG 2O
oundary classglr -
gg’;“ — UAE 2u : g:g—;: 3.3 MEIEI Entity class
Contol class= SiLF 200 () B 5 A : gg—? Entity class = AEEI0H0FZ B2} D2E #2015 AT HEIE
3.0-7 - -
3.3 AEIE] Entity clas 210 UCo0L_Withdr @ 4
Entity cl = HEBT
[l a1 at2casH Lo
- 424 82 S8 @ 3.4: Dispensar sensar oge = E =21
s dj :gﬁ ﬁszféSrnun 212 (1) €% @ 35 Dispensor feeder Tra Cea bl I Ity explorer = o o
L] 213 E @983 @ 36 Cash counter a o = -
EETER N @+ 3,13 Client manager AL
Rkl B4 B A= @ 4110 () B E 7'." AOl-goI.E %!'?_l Cél' T QAI EI‘-
UCO0 _Withdrz e = A5 @ 41.1.0-2: B FHEHAE ATMO| ALETIHH E8 RIS #I8H ABHOZ
= Mﬁ)Cags;ierlnle W @ A2 @ 011 @) BT 2AADS
2 %"EEEH* 215 |Jucnizihd, a : j: éucisgf:e?t\lllt;::;hciraw B Formal module */ATM example/Preliminary Design/CIA2IS] AHH M current 0.0 - DOORS
farr X
(u%uu:awnhﬁ 216 UCO02_Deposi @ 41.20-1: 00 2 File Edit Mew Insen Link Analysis Table Tools User Analyst Help
U002 Degosi 217 UCOD3. Transs > j:ggg (ZE) g*é EDEHA ';I“DliTM 0l AFSTiSt SSE S5 4T T2k A HE2E & "
_Transfe 3 o
LJCO04 Inquiry 216 UCO04_Tnquiry @ 1,204 UCH0]_wihdraw [Standard view | [[AlTevels >]| 3ae im
UCO05_Check @ 4.1.2.0-5: UCO02_Depasit LR =
41,3 Cash Recepv 219 UCO0S_Check o 11 2 0R (10N Trancfar b2 B o \ 8l
£ ¥ < > frrid . :
W 2EDEH 58 3.4 Dispensor sensor
Username: shchoi Exclusive edit mode Object 206 in /ATh example/Preliminary Design/E4 Scl ~Z A M =3 EISK:D a‘ﬂﬂi 58
E ay 58 3.5 Dispensor feeder
= £
B
= *'I E cdl I:I=| A-II ‘-I SErima 60 3,6 Cash counter
Il _l E o ient Manager 2| .
ZHBI0IM(0pe 61 3.7 Withdrawal
4 Z A atribute)
E S2 GME &2 3,8 Deposit
chagAs| 2t
3.2 keypad
3,3 Card reader 63 3.9 Transfer
3.4 Dispensor sensor
3,5 Dispensor feeder &4 3,10 Inqury
3.6 Cash counter
3.7 Withdrawal 85 3.11 Account
3.8 Deposit
349 Transfer 66 3,12 Persistent class
310 Inqury
311 Account B
312 Persistent class &7 3.13 Client manager
3.13 Client manager .
3,14 Transaction manag| 68 3,14 Transaction manager
3,15 Accounting manage
+ SEE CHooi o 63 3,15 Accounting manager
C|XkO| @ &=l H 7 473 cholo] 1
2l FAMIM o
71 B BEal Uy REte] £ H (withdraw)
£ ¥ J JJ
Username: shchoi Exclusive edit mode
DEPENDABLE SOFTWARE 2 89

LABORATORY

Use-case model

Withdraw cash

' DEPENDABLE SOFTWARE

S LABORATORY

Design classes derive components in implementation model.

Implementation

Design model
model

Analysis model
_<<trace>> _____ e TN, S<trace>> e
Withdraw cash = |

Withdraw cash
Implementation model

<<executable>>
Client. exe
7

Design model

Client
v
manager .. <<trace>>
Dispenser << compllatloln» ',
v~ _ ~< . . \
feeder ;
=< trace>> <<file>> i << compilation>>
i Client.c !
Dlspenser‘ /
- ~~\\‘ ’l
sensor << trace>> ,
~~~~~~~~~~~~~ <<file>>
dispenser.c

Cash < ---<<trace>>

counter

Partial implementation model from design model

290



« Traceability link in DOORS

B Traceability Explorer - '/ATM example/Problem Analysis/Z212 ZAESHHIH" - DO... E'E'E'

File  Miew

@ b1 D[ EE g AR -~
=R 35 1.0-1: FEAT_0001 2I&{\Withdraw): 22H0] A Z
- 3.2 1 UC_0001: Withdraw cash
-4 4.3, 1: Account
& 3,15 Accounting mansge
&+ 312 Persistent class
& 311 Account
@ 42 1 Withdrawal
&+ 314 Transaction manager

& 3.7 Withdrawal
=@ 41,2 Cashier Interface
& 3.13: Client manager
& 1.3 Card reader
& 3.1 display
& 1.2 keypad
- 4.1.1: Dispeser
& 3.13: Client manager

& 1.6 Cash counter
&+ 3.5 Dispensor feeder
& 1.4 Dispensor sensor

+ - 5.1,0-2: FEAT_0002 &2 (Deposity: JMO| &aTME Eaf FHMZ HEHH H2E 2 2FHCH
+ - 5.1,0-3: FEAT_0003 OFRl{ Transfer): DMO| ATME Eafl MM HTHH Si= M2 E CFE HEE s2¢H0
+ - 5.1,0-4: FEAT_0004 Z==Zl{Inquiryi: 2XH0] ATMdmf Eaf A2 HI Y HEHLH‘:—”!% TEIEH}
oo F o oHl NI=R &3S \/

KU KONKUK
UNIVERSITY

Feature

y'y
1
| <<trace>>
1
1

Use Case

f<<trace>>

Analysis model

A
1 <<trace>>

Design model

Object 217 in "AATM example/Problerm Analysis/ 235 2AFRR MM

EPENDABLE SOFTWARE
LABORATORY

291




« Set links between the requirements - manually

H=1ES

HEE s2o v

=

|Standard view

x| Al levels = |

N MO
ar omc R

+

File

= ZN B AR M A
1eHE

B PeEEME
JooZ2HE ZEAAI} ALE
o Y

tio
saZ]| SRR

- b1 =5Y EME

- FEAT_0001 212 (With

Edit  Wiew

I

216

5.1

2153 a AR

217

bl

FEAT_DOD1 91 (wWithdraw):

L] ATMO E R A9 AKol L

Insert Link Analysis

Hag see|v

=

Table

Tools

=5

User A4nalyst Help

B

EPENDABLE SOFTWARE
LABORATORY

\Standard view = [MTevels <] 3 2 7
= 3.2 1 UC_0001: Wi A | [1p E];]
I
o 452 321 14
2 Insert v
3. Mo L
] LR S Lk -
454 DA ATM| 7| Clear Start
Bt Cut
02, ATME AH 455 20JHWE 5! Copy
I )

Link module2

2= ES 0]
2 A
BHA ()

e

o8t dE

7|2 FAFE HM MO Q=
feature

II=|

Eflof 8Arg MM

Use Case

(o] 1L
‘A e

£7|2T A BHIA ()

B Link module '/ATM example/Problem Analysis/DOORS Links® current 0.0 - DOORS
File Edit View Tools Help

a1 3001
F2H0IA T

S4H0IA 2Y Bl
EEES VES
2,08 = .2.1.0-
= « & Drepart)
- 207
-t - B OMcheckvaid o2k
g 42
4E)|= gor
LACE]
o HIZ 2 JH By
™
W REIAQ 4H ¥y
S5 —t
27| RFNE.
=N/
g N aFNE
<
: OomEDECmE 0
2 5102 .
FEAT_0002 ) S(Depost): L
5103 .
L FEAT_0003 OFRi(Transfer):
D 5104 .
2 FEAT_0004 Z&{Inquiry) 2
5 52 .
HI2IEY 834 -
Ll Il e

Usemame: shchol Exclusive edit mode Source: 2718 FARISMAM Target: 2ZEYUBLARIBHM

292



* View relationships (Traceability column)

E Formal modu example/Problem Analysis/Z 28 AR Y A current 2.0 (1) - DOO|

File Edit “iew Insert Link Analysis Table Tools User Analyst Help

- —Depth of link

CEER ¥ ==
[Standard view | [allevels ]| 3uc 7oAl B
El ijl]%ig@gmM E|0uHmk5 at depth 1 |0uHmk5 at depth 2 |0uHmk5 at depth 3 ‘ Out-links at depth 4
&
FEAT_0001 91& (Withdraw): 2 80] ATM & /ATM exarmple/Systarm FATM AT example/Preliminary Design/C| AF2T 2

W ZeZ2HE WE
o HE Zia1 = o
FooR SRS HERN AR | o cupg qae] AR 9 X122 WE Defrition/=ZE )

xarmple/Preliminary

i
w4 co 8 E HEF (optional)

SO BN e || FERE 03O0 TR A Design/2 A2~ A 6o

: 452 A Accounting mana

FEAT_D001 21 & (With
FEAT_0002 & 3 (Dep
FEAT_D0O3 OFAH( Trar
FEAT_0004 Z] (nau
# 5.2 H| JIS™ 2N
B ood2F AR
TooET Al

BeoBAEF RPARE

1: withdraw cash 247

FATM examplePreliminar
2H 4B H M
66
Persistent class

Account

)

4

FATM exarmplePreliminary Das\gn/’[\ Al
2238 M

Out link 2 ¢ A=

B5

JATM
example/Freliminary Account

Design/E A 22l = Al /aT™ example/Freliminary Design/C| A2
A 2H 4B MM
226 62
i ithdravwal Transaction manager

/|

X7 FAFS HA MO
Features

AT example/Preliminary Design/C| AH2!
2l 2B MM
61
withdrawal

JATR

example/Freliminary
Design/= A 2l =~ 4l saTm example/Freliminary Design/Cl Al

A 2H =T
211 87
Cashier Interface Client rmanager

L1}

ST example /Preliminar sign/C| A2 2
2 2=H MM

JBTM exarmple/reliminary Design/C| AHEI 2
2H AT A
432

IATRA

~ Use Case,
Analysis Class,
Design Class =

3| s

Exclusive edit mode

T

EPENDABLE SOFTWARE
LABORATORY

293



KU KONKUK
UNIVERSITY

* View relationships (Traceability Explorer)

£ Traceability Explorer - */ATM example/Preliminary De... E]@|E|

File  Wiew
M A
& 1.0-1: 2 2= ATM Systern HHE 2EF DA 22 BHMOICH 24 ¢
,‘ 2 xI-J_]__|="_'.5-|
@ 20-10 SAHOA BHM, AZEYH SZAMNEFHAM, DIFIEH J2M.
@ 3 072 SH2 =22 “display” class 2 &2l
- 31 displa
?H d.l.Ep: Cyashier Interface — Use Case 67Ha Feature 47H7|-
4@ 3.2.1: UC_0001: Withdraw cash ZTHst2 zHolsk 2 ol
=@ 5.1.0-1: FEAT_0001 2125 (Withdraw): DH0| ATMS 22E A2 S S 2de + UL
+@ 1.0-1: Modification of object 217 in "1 ATM example| Problem
—-+@ 3,22 UC_0002 : Deposit cash
& 51.0-2: FEAT_000Z & Zi0eposity: DMO| ATME Edll FFH2 H:
—-+@ 32,3 UC_0003 : transfer funds
& 51,0-3: FEAT_0003 OFEHE Transfer): DMO] ATME Ed AR H
—-+@ 3,24 UC_0004 : Inquiry account
@ 61 0-4: FEAT_0004 Z2|(Inquiry): D801 ATMdmi Sal RS20 H
& 325 UC_0005 : check validity
+& 3,26 UC_0006 © report
& 3112
& 31.1.0-10 ATM2] MHIAE H ST #EF AEAF SHHEEE BEEL
g 31,2 =
& 3.1.20-1 SHESE0E SHAFC)
s 71T ZEH &
< >

EPENDABLE SOFTWARE 2 9 4
LABORATORY




K KONKUK
UNIVERSITY

Requirements Management Tools

- |IBM Rational DOORS « ESG PRACTICA RM+

a X
e B It v e com - -ma -@c| U - z

2 Ravcnal DOORS - 1R

GED RD 2w FERIm SR S8 - nal Buquirements | [l impacted 3
g O Coogle & Requrements Engneein._ s CEC340F Couwrse informa_ [ naver i wois 4% @ D023 G oUEER BB e HORE e B B30 @ . -
i aquirwmny ¥

isM SV IBMOPEOlA A Q & = »

Rational DOORS R L | M s

e [veien | Meav.

wa [y
B Mequementi Spetheit. Werk
S NG Ve Reaueements  Work )
m
m UCHT Swfiing current Sme
m L TETET

[ a :. FEWE [T
. m LLEZ.] AZQ0 B2 SR, YA ADE BABD A0 VRN §12 95 P8 Y0l
Rational DOORS m WO TN | TEEN 60 00 6 TWE ¥ 6.0 E & BEN 905y
I -
a7 " T AR
= - m 1, Userl 20 ALY TEF JIHN HN ANEE TAN0
CEEIE

LNARE MD BE BE G RN B NRNEE gay
" I WY vE Zune aRed

(A7 9,386,000 =g

Hatel g o]

3 userE FTUAZ AT TG URE SN UN CARE
" cann L NERE OB N BN URE CUND SO0 RE el
m A gand
m urerz FTUAT D EX L0 SAY OND 248 0X

el

" 5 us

T8 ERY 2 WA 0 DS SR

" S MEEE S R 2E SHUND 08 HA0 SN0
" User HiBE B 0 WA L SV WK EE
LT

URIE AP TR TUNUEE BEHD AREE T

Hi=LI Ao 0lSHAH ES25tda

o et ) | n v2me w3 4 22e BRED B0 NS wENO
r - - — T Desgninmrcure Wk (1)
B Lepi e Werk 11| EACGE
- . ~
- 160 O 20§ 2] Of = 3444 Q A = W) Rotiating - Work () e BNER, tier GN U5 950 SEGTE WHE 5%
I et Speatication wor
1 AHEE TROD
Ratlonal DOORS Next Gener... ME MM A XE | £ MARE OR 4 ITE FENI OB AUR SRU0
T Urer HHE ERE 00 FINAE 98 898 35
L Urer e TS 2 WAN W SEE Eed
[EXE LR ERT PETVERT LY LR
Uz S EEY 00 HOIN SUE OGN0 L8
2748 = . o

SUY ERY 0 SOUN SYNAE BUND. 0
LT

ational DOORS Next Generation
of 7R BB B PR B E AN A
2o + gLk

o EANAE AN AWE 000 | @ usE eon yes I8 SIEE SN0

=5 ¥%213,300 25

W ETN

. - “HU 4D 5% UG AN #RED
- i i s . - 3 SV NV UNSRNR 2O AN B8
P8 HE e

- BWE OB £ BRNE BUED

UEW 3 ¥EV 0 88N T SEV W U2V ™ AEY MEEY 8

0 e st

Yo AL 7Hs X
]}EPEE;Z;ZESRTWARE 2 9 5




Requirements Management Tools

Fie Edt  Tooks Admn  System  Hep

Raoadxha

i Systam Data Erkry
] Marual Data Entry
7] Wainkain Full Actifact Text

Tarpal Data Eriry

Praintain Full Artfact Teat Musthave  Completed 1.0

[ Brvary Fie Sttachmerts Birary File Attachments Musthave  Completed 10

Impert Recurements Ioportant  Completed 1.1
17 Spelicheck Custom Database Fiedds Mot required  Approved 1.1
1] Externaly Linkad Decuments Spaldheds Mot raquirsd Approwed 1.1

Externally Linked Docurisets Musthave  Compieted LD

Uniquely Identify Artifacts
e MECEn b Uicusly [dertfy Artfacts

z
3
4
7] Impart Requinsments 2
]
7
]
] Dekbins Artifack Hisarchy i

-y ] Define ArtFact Hiearchy Musthave  Completed 1.0
| == detoekDekai i It User Defied Felds Musthave  Compieted 1.0
-0 System Nervigation iz Syebem Mavigation
=1 alrmubikr ] 13 froup and Sort Arbfacts Impeetant  Compieted 1.1
[, identty Source end Crigh 1 Fiker List of Artfacts Irpotant  Completed 1.1
L Trace Extenal frtacte 15 A hee Cueries Important  Submited 1.1
{1 Trace artfacts 1 Tracaabity
17 Identfy Source and Crign Musthave  Completed 1D
(] Trace Externd Arifacs Important  Submited 1.1
18 Trace detfacts Musthave  Completed 1.0
Identfy Untraced Aoquiremants  [mpoctant Comploted 1.0
Configur ation Management.
Teack Requirement History Importart  Completed 1.0
Wersion Artfacts

~ERRDREY

System shak support the manual data entr
System shall sore For edting the ful teud: ¢
System shak suppoet the attachment of bis
System shal impirt external requirsments.
System shal aliow user definkion of artifac
System shak support spell checking on datd
System shal support krks from the artfacy

System shak support user defined artfacts

System shal aliow artifacts o be sorted as
System shak sliow the st of artFacts ko be
System shel pesform ad hoc queries o ret

System shak b able to idenkFy the souroe
System shall diows traceabilty to external i—
Syﬂemﬂu!aﬂmmmbﬂmeduxm‘
System shal orkFy untraced reqursmet

System shall track entire history of artl,
System shall sfiow For versionng of artfact

Wews Related Artfacts System shall aliow alf related artifacts to
3 Implamentation Charge Contrsl Process System shal diow Fer a change conkrel pe
(8 TesiCaee imaidhobid Fern sl e i orihany b e bl
. — [4] v

Requremerk |, Detals | Background ' Use Case ', Relations | History |

Goal: | create, reteeve, update and delste hievarchy of artifaces |

Context: artifacts: Fealures, Requirements, Diesign, Implementation, Test Cases ebe
Precondlion: Mew product crested

LUser sedects a product
User selacts an artfact of the desired type
e User crastes a new chid artfact
Systen displays & dat sntry Form For the selected bype
User arkers and saves the new data elements
Systenm crestes  hisrarchal relationshp between the st sets

User updates an existing artfact
User moves an artifact to a new artifact of the same bype
Al Flows: Liser creates 2 relationship between bwo artifacts

Postoandbion: [system saves artifect n hisrarchy

i s case goal

LABORATORY

JFeatures

e

K

[ cquirements.jrq - [chpse SOK
Be [ Noaate Soxch Bowdt B Whdw bbb

o- $-0-Q- BUG- I ®F I @- FXRBRLEEA DR

(O RO SN S v, ... x W £-e

e Requirement Coverage Report
All Categories >
Requirement Coverage Summary

Summary (8)

Requirement Coverage Details
All Requirements Sré Categary Caverage

1. Advanced (¥
Add the rumbars. (%)
2 Basicl4)

Seprt gansested or Mor, 06 Ape 2007

¢ Feature

4053 10530

Requirements Test Methods [
Ratio

0 Test Methods Nene

I .

I

KONKUK
UNIVERSITY

Requirement Editor

calculator_requirements.jrq - Eclipse 9

Requirement Editer Buttons

B[(% Colegy
= 1 Cadster 3
OB s ] =3
st h B el
B rchest Tal mex ok
@ B RESyemlbrary (350040 ([ 201 Adverced  Round
() commors g, 221 advced  Round
-0 semrnim 231 idvarced _ bsckse
i X P T
0 prrge R —
@ (0 bogti 128 ) Cony Recumsnmsts) s
& buid 0 Paste Requrement(s) ey
el — of e Requemert(s) i
L gidistioal ] oot Roquenebcon Insert
5 G ropm ] raet Requenent above e
caaiston_jequiemeis. o 8, Move Requecmerti)Up  CHIUP Arow
calaiaoe jequrements.x %, Move Requicmertis) Oowen ClkeOowe Ao

Requirement Coverage
Repan View

&

Editor Popup >

Probles | Jowadac Deciation| Consa | ErnceLog [[2) Festre

Requirement Coverage Report

1 or with project via "
2. Run the unit test(s)
3. Refresh the Coverage Report.

Generate
Coverage Report

296



K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 9 7
LABORATORY



