KU KONKUK
UNIVERSITY

OOAD/UML 7| &

X
30 H!

My =2
oE Jot
El

% | b
A DEPENDABLE SOFTWARE
!‘.I. y LABORATORY

e

Contents

An Introduction to Object-Oriented Development

— Obiject-Oriented Development
— Object-Oriented

— Obiject-Oriented Principles

- UML

Object-Oriented Analysis and Design
— Part I. Introduction
— Part ll. Inception

— Part lll. Elaboration lteration 1 - Basics
* OO Analysis
+ OO Design
* OO Implementation

Advanced Topics in UML
— Statechart Diagram
— Component Diagram
— Extension Mechanism of UML

Object-Oriented Analysis and Design - Summary

KU

KONKUK
UNIVERSITY

Contents at a Glance

An Introduction to
Object-Oriented Development
(OOD)

* Object-Oriented Development
* Object-Oriented

+ Object-Oriented Principles

* UML

Advanced Topics in UML

« Statechart Diagram
» Component Diagram
+ Extension Mechanism of UML

(! DEPENDABLE SOFTWARE
R LABORATORY

Object-Oriented Analysis and Design

+ Part 1: Introduction
« Part 2: Inception
+ Part 3: Elaboration Iteration 1 - Basics

Object-Oriented Analysis and Design -
Summary

An Introduction

Development

B

Contents in Detail

CHx|

1.

to Object-
Oriented

EPENDABLE SOFTWARE
LABORATORY

12
3

4

56

A7

Object-Oriented
Development

Object-Oriented

Object-Oriented
Principles

UML

o
o>
o
f

ATEQO] HEt
« OOAD 2} SASD°| At
o CHASE AT EQOf 7Y

=13

TEekn Falg + Utk

ZH K| X| 2k (Object-Oriented)S |2

—

‘ KU KONKUK
UNIVERSITY

SM e

* OOAD vs. SASD
+ Software Development Process

* Object-Oriented

» Object-Oriented Principles

* 13 UML Diagrams

Contents in Detail

7 Part I. Introduction

2 89 Partll. Inception c
Object- .
Oriented Part IIl. Elaboration .
Analysis and) ,
Design 10 Iteration 1 — Basics .
- O0A
APPLYING UML .
AP R i1 - 00A
12 - O0D .
13 .
14 - O0D
15 .
16 - O0D
17 - 00D)
18)
19 - 00l

EPENDABLE SOFTWARE
LABORATORY

sg 25

UP 7|8t OOADS| A EtA 2l Inception EHAHIE
olshgt £= ULH.

Inception THA o] E&
75|75 fTA
Use CaseS Z8%

Ct.

Sequence diagram?| =&
2 oIC}
T M .

Operation contract®| 542 O|s}j&

Design tHAH Q| 252 O[3 Cf.
Package diagram2| SX & O|sfjsl1 &85t
oITt

AT

242

=52 oldlstn 28

Sequence diagram2|
= QUCt
A .

of
of
kI
e
0o

_(')l'

Class diagram?| 582 0
ALt

0O DesignOflA{ Implementation2 £ 2|
Mot S dest| olshe = ULk

Heee 2ol HEe golg + QUr.

KU KONKUK
UNIVERSITY

M UHE

» Chapter 1.
Design

» Chapter 2.

» Chapter 3.

Object-Oriented Analysis and

lterative, Evolutionary, and Agile
Case Studies

» Chapter 4.
Phase

» Chapter 5.

» Chapter 6.

» Chapter 7.

Inception is Not the Requirements

Evolutionary Requirements
Use Cases
Other Requirements

» Chapter 8.
» Chapter 9.

Iteration 1 Basics
Domain Models

» Chapter 10. System Sequence Diagram
» Chapter 11. Operation Contracts

» Chapter 12. Requirements to Design lteratively
» Chapter 13. Logical Architecture and UML
Package Diagrams

» Chapter 14. On to Object Design
» Chapter 15. UML Interaction Diagram

» Chapter 16. UML Class Diagram

» Chapter 17. GRASP: Designing Objects with
Responsibilities

» Chapter 19. Designing for Visibility
» Chapter 20. Mapping Designs to Code

20

Topics in UML

B

Contents in Detail

3.
Advanced

4.
Summary

EPENDABLE SOFTWARE
LABORATORY

21

22

23

24

Statechart Diagram

Component Diagram

Extension Mechanism
of UML

OOAD Summary

« Component Diagram= O|sfist 1 28t

« UMLS M HESHH &3 ot= LS ol

ALY

ULt

* MOF2| 7 & o8l 4= ULt

K

KONKUK
UNIVERSITY

SM e

« Statechart Diagram

» Component Diagram

» Extension Mechanism of UML

dM HE

* OOAD Summary

Text and References

APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Hterative Development

Teogie e il me whach o S best book fo introduce them to Be warkd of 00 desgn.
B e T camer srtt W, Appfyong UK and! Pamterin hus beem my s choner *
Martin Fowles, authoe of (MI Distid anal Reficionng

C I’\H. l \I{\I\\

by Phulippe Kruchten

EPENDABLE SOFTWARE
LABORATORY

SOMMERVILLE

g
B -

SOFTWARE ENGINEERING

Your Brain on D

Head Flrst
Design Patterns

vold thoso
embarrassig |
cnuplng mistakes

you m Aawm Py

OREILLY?

Software Engineering
A PRACTITIONER'S APPROACH

RogerS. |
PRESSMAN
Bruce R.
MAXIM

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

ASystem of Patterns

THE RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

Trirp Epirion

[Re=]

KONKUK
UNIVERSITY

Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
John Vlissides

Foreword by Grady Booch

o

SIS ONILNIWOD TVNOISSHONd ATISIM-NOSIaaY »

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 8
LABORATORY

Object-Oriented Analysis and Design

» Part 1: Introduction
» Part 2: Inception
« Part 3: Elaboration Iteration 1 - Basics

Text and Contents

|
APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and iterative Development
| THIRD EDITION |

Togle ofiem il mr whech 5 e besd book fo introdece them fo e warkd of 00 desgn
oy e | s TS B, Ay LK ang! Patferm his been my unresereesd chose
-“ﬁmk-hnnmudﬂﬂ[ﬁnﬂﬂuﬂ&ﬁﬂmq

CRAIG LARMAN

i B

Ff.m“ﬂhu

EPENDABLE SOFTWARE
LABORATORY

l (KONKUK
UNIVERSITY

CONTENTS AT A GLANCE

PART | INTRODUCTION

1
2
3

Object-Oriented Analysis and Design 3
Iterative, Evolutionary, and Agile 17
Case Studies 41

PART Il INCEPTION

4
5
6
74

Inception is Not the Requirements Phase 47
Evolutionary Requirements 53

Use Cases 61

Other Requirements 101

PART lll ELABORATION ITERATION 1 — BASICS

9

10
"
12
13
14
15
16
17
18
19
20
21
22

Iteration 1—Basics 123

Domain Models 131

System Sequence Diagrams 173

Operation Contracts 181

Requirements to Design—TIteratively 195

Logical Architecture and UML Package Diagrams 197
On to Object Design 213

UML Interaction Diagrams 221

UML Class Diagrams 249

GRASP: Designing Objects with Responsibilities 271
Object Design Examples with GRASP 321
Designing for Visibility 363

Mapping Designs to Code 369

Test-Driven Development and Refactoring 385

UML Tools and UML as Blueprint 395

PART IV ELABORATION ITERATION 2 — MORE PATTERNS

23
24
25
26

Iteration 2—More Patterns 401

Quick Analysis Update 407

GRASP: More Objects with Responsibilities 413
Applying GoF Design Patterns 435

PART V ELABORATION ITERATION 3 — INTERMEDIATE TOPICS

27
28
29
30
31
32
33
34
35
36
37
38
39

Tteration 3—Intermediate Topics 475

UML Activity Diagrams and Modeling 477

UML State Machine Diagrams and Modeling 485
Relating Use Cases 493

Domain Model Refinement 501

More SSDs and Contracts 535

Architectural Analysis 541

Logical Architecture Refinement 559

Package Design 579

More Object Design with GoF Patterns 587

Designing a Persistence Framework with Patterns 621
UML Deployment and Component Diagrams 651
Documenting Architecture: UML & the N+1 View Model 655

PART VI SPECIAL TOPICS

40

More on Iterative Development and Agile Project Management 673

OOAD

Design Patterns

Architecture Style

Architecture Description

10

Chapter 1.
Object-Oriented Analysis and Design

KU v

Object-Oriented Analysis and Design

« Object-Oriented Analysis (OOA)

— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)
— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

-
| Y
i f;I)EPENDABLE SOFTWARE 1 3
Ly LAl
R

KU KONKUK
UNIVERSITY

An OOAD Example - Dice Game

Define domain Define interaction Define design class

Define use cases) "
model diagrams diagrams

Interaction Diagram

."Diu-GWi m imﬂb-.; \
i

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.

Domain Model

Design Class Diagram

. lawl) \)
- If the dice’s face value totals seven, e \ \ 1
player wins; otherwise, player loses. o B i :
é \
)
| L__ ol . 5
e] ; 1
- :MB‘V&“&[\ ‘ _"
. Player E Rolis 2| Die !
name faceValue "i
1 ' 2 i _
Plays i DiceGame Die
| ! i die1 : Die . 1 2 faceValue : int
DiceGame i die2 : Die :
i1 Includes : . getFaceValue() : int
i play() roll()

PENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

UML

o “The Unified Modeling Language (UML) is a visual language for specifying,
constructing and documenting the artifacts of systems.”

« 3 ways to apply (use) UML

— Sketch
» Conceptual perspective

» Informal and incomplete diagrams are created to explore difficult parts of the problem or
solution space. — Intercommunication medium

— Blueprint
» Specification perspective
« Relatively detailed design diagrams are used for code generation.
— Programming language
* Implementation perspective
« Complete executable specification of a software system in UML
— Executable code will be automatically generated.
— Still under development in terms of theory, tool robustness and usability.

I EPENDABLE SOFTWARE 1 5
LABORATORY

What the UML is Not?

« UML is not an Object-Oriented analysis and design process.
— UML is not a systematic way to develop software systems.

 UML will not teach you an Object-Oriented way of thinking.
— It will not tell you how to design object structures or behaviors.
— It will not tell you whether your design is good or bad.

KU

KONKUK
UNIVERSITY

16

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 1 7
LABORATORY

Chapter 2.
Iterative, Evolutionary, and Agile

Software Development Process and the UF

« Software development process
— A systematic approach to building, deploying and possibly maintaining software

« Unified Process (UP): a popular iterative software development process for
building object-oriented systems
— lterative with fixed-length iterations (mini waterfalis of about 3 weeks)
— Inspired from Agile (i.e., opposite from waterfall)
— Flexible (can be combined with practices from other OO processes)
— A de-facto industry standard for developing OO software

h RN
I'S é‘;DEPENDABLE SOFTWARE 1 9
N LAl

KU vy
Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

» Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.
— Early iterations focus on building, testing, and stabilizing the core architecture.

(tr2f3ra47s[.. [[[[[[[[[[T [T20]
< ———
e
\ i
e T
\\ requirements workshops —---——.____ L TS
\ Tl TTe—

Imagine this will oo S s T T e
ultimately be a 20- ° e ° °
iteration project. 8 o 2 ©

[= < j—

Q [@ ®

’ " " = s = s
In evolutionary iterative] 5 @ 3
development, the S L2 3 L2
requirements evolve g g
over a set of the early
iterations, through a
series of requirements 90% 90%
workshops (for
example). Perhaps
after four iterations and 50%
workshops, 90% of the °
requirements are 30%
defined and refined. 20% e 20%
Nevertheless, only 2% 5% 8% <
o .
i 10,/“ of the software is Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
n ;:—EDEPENDABLE SOFTWARE built. 7 . . = 20
N W »7 a3-weekiteraton TT—~__

I -

KU v

The UP Practices

 The central idea to UP practices :
— Asshort timeboxed iterative, evolutionary and adaptive development

« Additional best practices and key concepts:
— Tackle high-risk and high-value issues in early iterations (- Risk-driven, Client-driven)
— Continuously engage users for evaluation and feedback (- client-driven)
— Build a cohesive, core architecture in early iterations (— Architecture-centric)
— Continuously verify quality; test early, often, and realistically
— Apply use cases where appropriate
— Do some visual modeling (with the UML)
— Carefully manage requirements (configuration management)

h RN
I'S é‘;DEPENDABLE SOFTWARE 2 1
N LAl

I { U {’(N?VRHSH"'

The UP Phases

« A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

developmentcycle
A
4 . | N
iteration phase
/\ A
4 A
inc. elalboratjion construcition transition
milestone release increment final production
N : ; release
An iteration end-point A stable executable subset The difference(delta) . .
when some significant of the final product. The between the releases At this point, the system
decisionor evaluation end of each iteration is a of 2 subsequent is released for
occurs. minor release. iterations. production use.

g,
| ¥

.g%]EPENDABLE SOFTWARE 22

o

'IL

0 LABORATORY
EUS S

T

KU KONKUK
UNIVERSITY

The UP Disciplines

A four-week iteration (for example).

A mini-project that includes work in most Note that
disciplines, ending in a stable executable. although an
,/_\ iteration includes
. i \ work in most
Up D"f'm{’ ;-f disciplines, the
Isciplines | relative effort and
T _ emphasis change
4 Business Modeling : : oveﬁ time i
Focus ‘ 7/;/-*-*""’_ f"‘~ . O : .
of this Requirements | ——— — R e This example is
book ‘ Design e ol | D e e S suggestive, not
. "1 _ﬁ_*_f"""’-ﬁ - literal.
Implementation | ——=—r—""">"
Test
Deployment ——*j— -+ @@
Configuration & Change 7 — 1 i e
Management | ——"""
Project Management |——"" e
- \—__1—\——.
Environment
lterations

g,

:'II | %bEPENDABLE SOFTWARE 23
A
LY

LABORATORY

KONKUK

Relationship Between the Disciplines and Bl
Phases

» The relative effort in disciplines shifts to across the phases.

Sample incep- . . transi-
g % ug , elaboration construction ;
UP Disciplines tion ‘ ‘ - e tion k
_ _ The relative effort in
Business Modeling disciplines shifts
_ I UL N NS T T T A A R R R across the phases.
Requirements [—=""" e
_ N o A e o o S SUE DO N OO DO R This example is
Design = v suggestive, not literal.

— Atrtifact : A general term for any work product

« Example: code, web graphics, database schema, text documents, diagrams, models
and so on

— Discipline : A set of activities and related artifacts in one subject area
« Example: the activities within requirements analysis

() DEPENDABLE SOFTWARE 24
Yy LABORATORY

The UP Development Case

« Development Case:
— An artifact in the Environment discipline
— Documenting the choice of practices and UP artifacts for a project

i ' DEPENDABLE SOFTWARE
R LABORATORY

For example, the development case for the NextGen POS case study :

Discipline Practice Artifact Incep. | Elab. | Const. | Trans.
[teration- 11 E1l..En | C1..Cn | T1..T2
Business agile modeling Domain Model S
Modeling req. workshop
Requirements |req. workshop Use-Case Model S
vision box exercise Vision S
dot voting Supplementary S
Specification
Glossary S T
Design agile modeling Design Model s r
test-driven dev. SW Architecture
Document
Data Model S r
Implementa- |test-driven dev.
tion pair programming
continuous integration
coding standards
Project agile PM
Management [daily Scrum meeting

KU v

25

You Know You Didn’t Understand Iterative KU S
Development or the UP When ...

« Some signs that you have not understood what it means to adopt iterative
development and the UP in a healthy agile spirit.

= You try to define most of the requirements before starting design or implementation.
Similarly, you try to define most of the design before starting implementation; you try to
fully define and commit to an architecture before iterative programming and testing.

= You think that inception = requirements, elaboration = design, and construction =
implementation (that is, superimposing the waterfall on the UP).

« You think that the purpose of elaboration is to fully and carefully define models, which are
translated into code during construction.

» You believe that a suitable iteration length is three months long, rather than three weeks
long.

» You try to plan a project in detail from start to finish; you try to speculatively predict all the
iterations, and what should happen in each one.

EPENDABLE SOFTWARE 26
LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 7
LABORATORY

KU KONKUK
UNIVERSITY

What is Covered in the Case Studies?

» Generally, applications include
— Ul elements,
— Core application logic,
— 0OS, database access and collaboration with external SW/HW components.

Our concern !!!

EPENDABLE SOFTWARE
LABORATORY

(5] 1he FOO Stose

wemi | 5
Ouanity | L
Interface >
‘ Enfer ltemn Andd S0 0 . .
_
~ e %
application
logic and Sale Pagiietii
domain object)
layer g) o
N
technical " — o L
services layer 0g ersistenceFacade P
v

Layered Architecture

minor focus

explore how to connect to
other layers

primary focus of
case study

explore how to
design objects

secondary
focus

explore how

to design
objects

29

KONKUK

UNIVERSITY

Case One: The NextGen POS System

The first case study is the NextGen point-of-sale (POS) system. In this apparently straightforward
problem domain, we shall see that there are interesting requirement and design problems to
solve. In addition, it's a real problemgroups really do develop POS systems with object
technologies.

A POS system is a computerized application used (in part) to record sales and handle payments;
it is typically used in a retail store. It includes hardware components such as a computer and bar
cade scanner, and software to run the system. It interfaces to various service applications, such
as a third-party tax calculator and inventory control. These systems must be relatively fault-
tolerant; that is, even if remote services are temporarily unavailable (such as the inventory
system), they must still be capable of capturing sales and handling at least cash payments (so
that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and interfaces.
These include a thin-client Web browser terminal, a regular personal computer with something
like a Java Swing graphical user interface, touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to different clients with
disparate needs in terms of business rule processing. Each client will desire a unigue set of logic to
execute at certain predictable points in scenarios of using the system, such as when a new sale is
initiated or when a new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through requirements, object-
oriented analysis, design, and implementation.

EPENDABLE SOFTWARE 30
LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 3 1
LABORATORY

Chapter 4.
Inception is Not the Requirements

Phase

What is Inception?

* Most projects require a short initial step to question about:

What is the vision and business case for this project?

Feasible?

Buy and/or build?

Rough unreliable range of cost: Is it $10K-100K or in the millions?
Should we proceed or stop?

* Inception should be short.
— One week for most projects

EPENDABLE SOFTWARE
LABORATORY

Most requirements analysis occurs during the elaboration phase, not inception.

34

Artifacts Start in Inception

Artifactl 1

Comment

Vision and
Business Case

Describes the high-level goals and constraints, the business case, and
provides an executive summary.

Use-Case Model

Describes the functional requirements. During inception, the names of most
use cases will be identified, and perhaps 10% of the use cases will be
analyzed in detail.

Management Plan

Supplementary Describes other requirements, mostly non-functional. During inception, it is

Specification useful to have some idea of the key non-functional requirements that have
will have a major impact on the architecture.

Glossary Key domain terminoclogy, and data dictionary.

Risk List & Risk Describes the risks (business, technical, resource, schedule) and ideas for

their mitigation or response.

Prototypes and
proof-of-concepts

To clarify the vision, and validate technical ideas.

Iteration Plan

Describes what to do in the first elaboration iteration.

Phase Plan &
Software
Development Plan

Low-precision guess for elaboration phase duration and effort. Tools, people,
education, and other resources.

DeveTJp ment
Case

A description of the customized UP steps and artifacts for this project. In the
UP, one always customizes it for the project.

[1- These artifacts are partially completed in this phase. They will be iteratively refined in subsequent iterations.
Name capitalization implies an officially named UP artifact.

EPENDABLE SOFTWARE 3 5
LABORATORY

How Much UML During Inception?

The purpose of inception is to collect just enough information to
— establish a common vision,
— decide if moving forward is feasible, and
— decide if the project is worth serious investigation in the elaboration phase.

Much UML diagramming is not required.

— Inception has more focus on understanding the basic scope and 10% of the
requirements, expressed mostly in text forms.

— In practice, most UML diagramming will occur in the next phase elaboration.

KU v

36

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 3 7
LABORATORY

Chapter 5.
Evolutionary Requirements

KU v

Requirements

Requirements
— Capabilities and conditions to which the system must conform

Requirement analysis is

— to find, communicate and organize what is really needed, in a form that is clear
both to clients and team members.

In the UP, requirements are analyzed iteratively and skillfully.

The UP encourages skillful elicitation (finding) via techniques such as
— writing use cases with customers,
— requirements workshops that include both developers and customers,
— a demo of the results of each iteration to the customers, to solicit feedback.

h RN
I'S é‘;DEPENDABLE SOFTWARE 39
N LAl

KU v

Types and Categories of Requirements

* Inthe UP, requirements are categorized according to the FURPS+ model

[R. Grady: “Practical Software Metrics for Project Management and Process Improvement”, Prentice-Hall Inc, 1992.]

Functional : features, capabilities, security

Usability : human factors, help, documentation

Reliability : frequency of failure, recoverability, predictability

Performance : response times, throughput, accuracy, availability, resource usage
Supportability : adaptability, maintainability, internationalization, configurability

The “+” in FURPS+ indicates ancillary and sub-factors such as:
* Implementation : resource limitations, languages and tools, hardware, ...
 Interface : constraints imposed by interfacing with external systems
» Operations : system management in its operational setting
» Packaging : for example a physical box
« Legal: Licensing and so forth

» ltis helpful to use FURPS+ categories as a checklist for requirements
coverage.

40

KU KONKUK
UNIVERSITY

Quality Attributes/Requirements

EPE]

Quality attributes/requirements:
— Usability + Reliability + Performance + Supportability
— Also called “Non-functional requirements”

The quality attributes often have a strong influence on the architecture of a
system.

NDABLE SOFTWARE 41

Rl

How Requirements are Organized

« The UP offers several requirements artifacts. (But, they are all optional.)

— Use-Case Model
» A set of typical scenarios of using a system
« These are primarily for functional (behavioral) requirements.

— Supplementary Specification
« Basically, everything is not in the use cases.
« This artifact is primarily for all non-functional requirements, such as performance or
licensing.
« ltis also the place to record functional features not expressed (or expressible) as use
cases; for example, a report generation.

— Glossary

It defines noteworthy terms.
— Vision

« A short executive overview document for quickly learning the project's big ideas.
— Business Rules

It typically describe requirements or policies that transcend one software project.

il ' DEPENDABLE SOFTWARE 42
A LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 43
LABORATORY

KU KONKUK
UNIVERSITY

Use Cases

« Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (analyzes) requirements

— An example (Brief format):

* Process Sale: A customer arrives at a checkout with items to purchase. The cashier
uses the POS system to record each purchased item. The system presents a running
total and line-item details. The customer enters payment information, which the system
validates and records. The system updates inventory. The customer receives a receipt
from the system and then leaves with the items.

— Use case is not a diagram, but a text.

Use Case Section Comment

Use Case Name Start with a verb.

Scope The system under design.

Level "user-goal” or "subfunction”

Primary Actor Calls on the system to deliver its services.

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start, and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth
telling the reader.

Main Success Scenario A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.

Special Requirements Related non-functional requirements.

Technology and Data Varying I/O methods and data formats.
Variations List

Frequency of Occurrence Influences investigation, testing, and timing of
implementation.

Miscellaneous Such as open issues.
m&EPENDABLE SOFTWARE 45

LABORATORY

Use Case Diagram

KU KONKUK
UNIVERSITY

- Use case diagram illustrates the name of use cases and actors, and the

relationships between them.
— System context diagram
— A summary of all use cases

system boundary

Actor / Customer

Something with behavior, such as a person,
computer system, or organization

- Primary Actor : has user goals fulfilled
through using services of the SuD (system
Under Discussion), €.d., cashier

- Supporting Actor : provides a service to the
SuD, e.g., payment authorization service

- Offstage Actor : has an interest in the behavior
of the use case, but is not primary or
supporting, e.g., tax agency

g,

i | DEPENDABLE SOFTWARE
i y LABORATORY

EUS S

A

.
-
[
[]

Ackar Cashier

Manager

aactors
Sales Activity
System

System
Adrministrator

NexiGen POS

. Process Sale

¢ Handle Retums

Cash In

{ Analyze Activily

1 Manage Security

3 Manage Users

Use case

. - cammunication

Payment

Authorization , .

Service

wACtor
Tax Calculator

wactors
© Accounting
System

aaciors
HR System

use case

alternate
natation for
a computer
systgm actor
i
;

46

Are Use Cases Functional Requirements*

* Yes, Use Cases are requirements, primarily functional (behavioral)
requirements.
— “F” (functional or behavioral) in terms of FURPS+ requirements types
— Can also be used for other types.

KU v

47

KU KONKUK
UNIVERSITY

Three Common Use Case Formats

 PBrief:

— Terse one paragraph summary, usually the main success scenario or a happy
path

« Casual:
— Informal paragraph format.
— Multiple paragraphs that cover various scenarios.

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to returmn. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

(DEPENDABLE SOFTWARE 48
\ LABORATORY

B

* Fully Dressed :

— Includes all steps, variations and supporting sections (e.g., preconditions)

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

K

KONKUK
UNIVERSITY

49

B

Example: Process Sale, Fully Dressed Styie

EPENDABLE SOFTWARE
LABORATORY

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

50

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.
3. Cashier continues with sale (probably entering more items or handling payment).
2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

2. Managers performs override.
3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can’t otherwise deduce how to tax it)
2c. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. ltem price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

51

— o

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
5. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

K KONKUK
UNIVERSITY

Special Requirements: .
— Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

— Credit authorization response within 30 seconds 90% of the timel. .

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing. .

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

—What are the tax law variations?

— Explore the remote service recovery issue.

— What customization is needed for different businesses?

— Must a cashier take their cash drawer when they log out?

— Can the customer directly use the card reader, or does the cashier have to do it?

52

Guideline: Write in an Essential Ul-Free Style

- Essential writing style is to express user intentions and system
responsibilities, rather than concrete actions.
— Concrete use cases are better avoided during early requirements analysis.

— For example: Manage Users use case

Essential Style Concrete Style
1. Administrator identities self. 1. Administrator enters ID and PW in dialog box.
2. System authenticates identity. 2. System authenticates Administrator.
3. ... 3. System displays the “edit user” window.

4. ...

53

KU KONKUK
UNIVERSITY

Guideline: Write Black-Box Use Cases

* Don’t describe the internal working of the system, its components or
design.
— Define what the system does (analysis), rather than how it does it (design).

Black-box style Not

The system records the sale. The system writes the sale to a database.
...or (even worse):

The system generates a SQL INSERT
statement for the sale...

o
A DEPENDABLE SOFTWARE 54
i 7 LABORATO RY

EUS S

Process: Evolutionary Requirements in IteratiVaéE=l
Methods

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration- I1 El..En | C1..Cn | T1..T2
Business Modeling |Domain Model S
Requirements Use-Case Model S r
Vision S E
Supplementary Specification S r
Glossary s r
Design Design Model S r
s

SW Architecture Document

EPENDABLE SOFTWARE 5 5
LABORATORY

Case Study: Use Cases in the NextGen PC

Use cases are developed and refined iteratively.

Use Cases of the NextGen POS at the inception phase

Fully Dressed Casual Brief
Process Sale Process Rental Cash In
Handle Returns Analyze Sales Activity Cash Out
Manage Security Manage Users
Start Up
Shut Down

Manage System Tables

KU s

56

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 5 7
LABORATORY

Chapter 7.
Other Requirements

KU v

Other Requirements Artifacts

Supplementary Specification

— Captures and identifies other kinds of requirements, such as
reports, documentation, packaging, supportability, licensing, and so forth

Glossary
— Captures terms and definitions; a data dictionary

Vision
— Summarizes the “vision” of the project; an executive summary

Business Rules

— Capture long-living and spanning rules or policies (such as tax laws), that
transcend one particular application

% . N
'I'S S'i)EPENDABLE SOFTWARE 59
N LAl

B

Supplementary Specification

KU KONKUK
UNIVERSITY

« Other requirements, information and constraints not easily captured in the
use cases or Glossary, including system-wide “URPS+” quality attributes.

» Elements of the Supplementary Specification include:

EPENDABLE SOFTWARE

LABORATORY

FURPS+ requirementsfunctionality, usability, reliability, performance, and supportability
reports

hardware and software constraints (operating and networking systems, ...)
development constraints (for example, process or development tools)
other design and implementation constraints

internationalization concerns (units, languages)

documentation (user, installation, administration) and help

licensing and other legal concerns

packaging

standards (technical, safety, quality)

physical environment concerns (for example, heat or vibration)

operational concerns (for example, how do errors get handled, or how often should backups
be done?)

application-specific domain rules

information in domains of interest (for example, what is the entire cycle of credit payment
handling?)

60

Process: Evolutionary Requirements in IteratiVaéE=l
Methods

Discipline Artifact Incep. | Elab. | Const. Trans.
Iteration=—> 11 El..En| C1..Cn T1..12
Business Domain Model 5
Modeling
Requirements Use-Case Model 5 r
Vision 5 r
Supplementary 5 r
Specification
Glossary g r
Business Rules s r
Design Design Model 5 r
SW Architecture s
Document
Data Model s r

EPENDABLE SOFTWARE 6 1
LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 62
LABORATORY

Part 3: Elaboration - Iteration 1 Basics

» Chapter 8. lteration 1 Basics

* Chapter 9. Domain Models

 Chapter 10. System Sequence Diagram
» Chapter 11. Operation Contracts

« Chapter 12. Requirements to Design Iteratively

« Chapter 13. Logical Architecture and UML Package Diagrams
« Chapter 14. On to Object Design

* Chapter 15. UML Interaction Diagram

« Chapter 16. UML Class Diagram

« Chapter 17. GRASP: Designing Objects with Responsibilities

» Chapter 19. Designing for Visibility
» Chapter 20. Mapping Designs to Code

10

Chapter 8.
Iteration 1 Basics

KU v

What Happened in Inception?

Inception is a short (only one week) step to elaboration including:

A short requirements workshop

Most actors, goals, and use cases named

Most use cases written in brief format (10~20% are written in fully dressed detail)
Most influential and risky requirements identified

Version one of the Vision and Supplementary Specification written
Risk list

Technical proof-of-concept prototypes and other investigations to explore the
technical feasibility of special requirements

User interface-oriented prototypes to clarify the vision of functional requirements

Recommendations on what components to buy/build/reuse, to be refined in
elaboration

High-level candidate architecture and components proposed
Plan for the first iteration
Candidate tools list

65

]}EPEN

On to Elaboration

Elaboration is the initial series of iterations during which:
— The core, risky software architecture is programmed and tested.
— The majority of requirements are discovered and stabilized.
— The major risks are mitigated or retired.

DABLE SOFTWARE
LABORATORY

66

KU vivemsery
Iteration 1 Requirements and Emphasis

Book lterations vs. Real Project Iterations

Iteration-1 of the case studies in this book is driven by leaming goals rather than true
project goals. Therefore, iteration-1 is not architecture-centric or risk-driven. On a UP
project, we would tackle difficult, risky things first. But in the context of a book
helping people learn fundamental 00A/D and UML, we want to start with easier

topics.

 The NextGen POS example

— The requirements for the 1st iteration follow:

« Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.

« Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

« Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.

« There is no collaboration with external services, such as a tax calculator or database.

« No complex pricing rules are applied.

g,

N DEPENDABLE SOFTWARE 67
i y LABORATORY

)i
U &

A

I { U {’(N?VRHSH"'

Implement Requirements Incrementally

» Incremental development for the same use case across iterations
— The requirements for the iteration-1 are subsets of the complete requirements or

use cases.
7| |
A use case or feature is
1 2 3 ‘ often too complex to
. l . y complete in one short
A [LY iteration.
) LY
% Therefore, different parts
Use Case Use Case Use Case or scenarios must be
Process Sale Process Sale Process Sale allocated to different
7 7 i 7 iterations.
< /
Use Case
Process Rentals
Feature: 7,
Logging 7
,LI h:é: EEEEEEEEE SOFTWARE 68

UP Artifacts Start in Elaboration

KU KONKUK
UNIVERSITY |

» These will not be completed in one iteration; rather will be refined over a

series of iterations.

Artifact

Comment

Domain Model

This is a visualization of the domain concepts; it is similar to a
static information model of the domain entities.

\
\ Design Model

This is the set of diagrams that describes the logical design.
This includes software class diagrams, object interaction
diagrams, package diagrams, and so forth.

Software Architecture

A learning aid that summarizes the key architectural issues and

Document their resolution in the design. It is a summary of the
outstanding design ideas and their motivation in the system.
Data Model This includes the database schemas, and the mapping

strategies between object and non-object representations.

Use-Case Storyboards, UI
Prototypes

A description of the user interface, paths of navigation, usability
models, and so forth.

EPENDABLE SOFTWARE
LABORATORY

69

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 70
LABORATORY

Chapter 9.
Domain Models

KU KONKUK
UNIVERSITY

Domain Model

« Domain model is a visual representation of conceptual classes or real-
situation objects in a domain.
— The most important classic model in OO analysis
— Can act as a source of inspiration for designing software objects and classes.

— Visual dictionary of the noteworthy abstractions, domain vocabulary, and
information contents of the domain

— Not represents software objects

« Domain model is illustrated with class diagrams
— no operations
— domain objects (or conceptual classes)
— associations between conceptual classes
— attributes of conceptual classes

« Domain model is a kind of a preliminary version of class diagram, if we are
well used to the application domain.

EPENDABLE SOFTWARE 72
LABORATORY

A

i

KU KONKUK
UNIVERSITY

Partial Domain Model for NextGen POS

g,

i | DEPENDABLE SOFTWARE
| y LABORATORY

)i
U &

concept Sales ltem
or domain ceessmrrreenC) Lineltem Records-sale-of
object 1
quantity 0.1
*
1“*
— k Stocked-in
association Q- Contained-in
1 1
Sale Store
attributes H date address
time 0.1 name
1 1
Houses
Paid-by 1.%
1 Register
Captured-on *
Payment 1
amount

73

:'I‘s DEPENDABLE SOFTWARE

KU v

Domain Model is Not Software Objects

« A UP domain model is not of software objects such as:
Software classes (i.e., C++ or Java classes)

Elements representing artifacts related to the implementation of the system

LABORATORY

(e.g., a database or a window)

Methods (operations)

visualization of a real-world concept in L
_ the domain of interest

it is a not a picture of a software class

software artifact; not part k

Sale
Domain Model
dateTime
SalesDatabase
(®
>
Sale
o®
2 date
time
print()

of domain model

software class; not part
.. of domain model

74

KU v

Why Create a Domain Model?

* Two reasons to create a domain model:

1. Getting to know the domain during early elaboration iterations, understanding
the concepts involved and their relationships

2. Inspiring the software classes of the domain layer in the design model.
» This prevents software from being far away from the reality of the domain.

* lower representation gap : Use software class names in the domain layer inspired
from names in the domain model, with objects having domain-familiar information and
responsibilities.

Al
() DEPENDABLE SOFTWARE 7 5
| y LABORATORY

B

A

A Paymentin the Domain Model
is a concept, but a Paymentin
the Design Model is a software
class. They are not the same
thing, but the former inspiredthe
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in

objecttechnology.

EPENDABLE SOFTWARE
LABORATORY

Lower Representation Gap

UP Domain Model

Stakeholder'sview of the noteworthy concepts in the domain.

The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the

Sale
b Payment 1 Pays-for 1
date
amount :
time
inspires
objects
and
namesin
Sale
Payment
R = — date: Date star
& amount: Money Syl tTime: Time
getBalance(): Money getTotal(): Money
UP Design Model

domain, and its representation in software, has been lowered.

KU KONKUK
UNIVERSITY

76

|

|
i

7
!.I. y
i

SN

KU KONKUK
UNIVERSITY

How to Create a Domain Model

« Same as the way of creating class diagrams.
1. Find conceptual classes and draw them in a UML class diagram
2. Add associations and attributes to conceptual classes

* |dentification of Noun Phrases

— ldentify the nouns and noun phrases in a textual description of the domain, and
consider them as candidate conceptual classes and attributes.

Process Sale use case

1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules. Register Item Store Sale

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated. Sales :
: i Cashier Customer Ledger
6. Cashier tells Customer the total, and asks for payment. L
7. Customer pays and System handles payment.
. : h Pr
8. System logs the completed sale and sends sale and payment information to the external pCES t EFC;(!:JCT. D Oqut{.:t
Accounting (for accounting and commissions) and Inventory systems (to update aymen | atalog escripiion

inventory).
9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

gébEPENDABLE SOFTWARE 77

LABORATORY

KU

Is the Domain Model Correct?

There is no such thing as a single correct domain model.
— All models are approximations of the domain we are attempting to understand.

The domain model is a primary tool of understanding and communication
among a particular group.
— Correct << Useful

KONKUK
UNIVERSITY

ABLE SOFTWARE 7 8

B

Process: Iterative and Evolutionary Domain

Modeling

The UP Domain Model is usually both started and completed in the

elaboration phase.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration—> Il El..Bn| C1..Cn| TL..02
Business Modeling | Domain Model S
Requirements Use-Case Model (SSDs) 5 r
Vision s r
Supplementary 5 r
Specification
Glossary 5 r
Design Design Model 5 r

SW Architecture Document

Data Model

EPENDABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

79

B

EPENDABLE SOFTWARE
LABORATORY

Business
Modeling

Require-
ments

Design

Sample UP Artifact Relationships

(

\

DomainModel

Sale 1 1.* Sales
Lineltem
date
quantity

conceptual classes— t
erms, concepts attribu

i

the domain objects, attribu
tes, and associations that
undergo state changes

-

elaboration of
some termsin
the domain m

/

»
L

tes, associations
odel
/ / Use-Case Model ; \
Process Sale ion:
Operation: enterltem(...) Caetis ..
1. Customer arrives Post-conditions: Item ID:...
2. o
3. Cashier enters .
item identifier. 4. Operation Contracts Glossary
Use CaseText /
DesignModel
| : ProductCatalog | ’ : Sale |
1 1 1
1 1 1
enterltem : : :
(itemID. quantity) | |
ql 1 1
'| spec = getProductSpec(itemID) J :
1 1
1 1
addLineltem(spec, quantity) : b:
1 1
1 1
1 1
1 1
! !

conceptual
classes in
the domain
inspirethe
names of
some
software
classesin
the design

KU KONKUK
UNIVERSITY

80

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 81
LABORATORY

11

Chapter 10.
System Sequence Diagram

KONKUK
UNIVERSITY |

Sample UP Artifact Relationships

Domain Model
Sale 1 1.* Sales
Business Lineltem
Modeling date
... quantity
7 Vision
Use-Case Model \
Process Sale
élassee 1.Customer
: arrives ...
Casiler names :
- 2.Cashier
’ makes new
- sale.
3... i » Glossary
o —_————— parametersan
Hoquits Use Case Diagram Use Case Text return value details _L
ments —
system =
events
% : System
Operation: : Cashier | SRR
enterltem(...) make I pplementary
system NewSale() Specification
Post-conditions: operations
i ' ; enterltern
Tt id, quanti
|
k Operation Contracts System Sequence DiagramS/

starting events to designfor

Design Model
4 : Register 9 | : ProductCatalog ‘ l : Sale ‘\
I
1

] 1
enterltem [

;) |
Design itemID. quanti >
I

spec = getProductSpec(itemID)

»

addLineltem(spec, quantity) /
]}EPEND}\HLE SOFTWARE 83

LABORATORY

v

KU KONKUK
UNIVERSITY

System Sequence Diagram

« System sequence diagram (SSD)

— A picture that shows the events that external actors generate, their order, and
inter-system events, for one particular scenario of a use case.
* the external actors that interact directly with the system,
* the system (as a black box), and
« the system events that the actors generate

— In the sequence diagram notation
— Depict system behavior in terms of what the system does, not how it does it
— Used as input to object design — System operations

« Use cases describe how external actors interact with the software system
we are interested in creating.

— During this interaction, an actor generates system events to a system, usually
requesting some system operation to handle the event.

EPENDABLE SOFTWARE 84
LABORATORY

KU v

Applying UML: Sequence Diagrams

 The UML does not define something called ‘System Sequence Diagrams’.
— We use the general UML sequence diagram notation.

— The term ‘system’ in SSDs is used to emphasize the application of the UML
sequence diagram to systems viewed as black boxes.

— An SSD shows system events for one scenario of a use case.

x

Process Sale Scenario

: Cashier ‘System
I 1
} makeNewSale >:
Simple cash-only Process Sale scenario: 1 I
. loop) [more items])) :
1.Customer arrives at a POS checkout i enterltem(itemID, quantity) >:
with goods and/or services to purchase. } I
2. Cashier starts a new sale. \ {
3. Cashier enters item identifier. } description, total :
4.System records sale line item and e e R R B]
presents item description, price, and } !
running total. } :
Cashier repeats steps 3-4 until indicates [I
done. Q ‘ endSale >
5.System presents total with taxes } :
calculated. \) I
6.Cashier tells Customer the total, and L<____________£o_ta_l Wwithtaxes ____________ :
asks for payment. } :
7.Customer pays and System handles []
payment. ‘ makePayment(amount) >:
| I
[I
e change due,receipt____________ i
I

EPENDABLE SOFTWARE |
LABORATORY

85

] [Ruee]
System Operation

« System operations

— QOperations that the system as a black box component offers in its public
interface

— Show system events, which the SUD should have system operations to handle
the system events.

— System Interfaces: the entire set of system operations across all use cases

Process Sale Scenario
System
- Caslhior ysl
. makeNewSale() b‘l
] 1
: 3 A
loop . [more items) i
| : enterltem{itemID, quantity) " these input system events
| : invoke system operations
: : the system eveni enferitern
B . description total I invokes a gystem operation
'r' . called enterliem and so forth
|}]
i H this is the same as in object-
" - oriented programming when
endSal
i e - we say the message foo
1 ' invokes the method (handling
]]
o lotalwithtaxes | opecaion) koo
| i
] 1
: makePayment(amount) D"
] H
i :
|}]
e ————- change due receipt _ __________ :
]

EPENDABLE SOFTWARE 86
LABORATORY

Guideline: How to Name System Events and
Operations?

» System events should be expressed at the abstract level of intention rather
than in terms of the physical input device.

« Example : scan(itemID) vs. enterltem(itemID)
— The enterltem name is better, since it communicates intention rather than the

input device.
N
; System
. Casghier .
better name A ! |
- : enterltem(itemID, quantity) |
>
|
|
scan(itemID, quantity) :
A 1
WOorse name :
|
|
|

KU KONKUK
UNIVERSITY

Process: Iterative and Evolutionary SSDs

» The UP doesn’t mention explicitly SSDs, but we can use them.

— Since the UP is very flexible, allowing any useful technique to be applied in its
context.

 Most SSDs are created during elaboration, when it is useful to

— identify the details of the system events to clarify what major operations which
the system must be designed to handle,

— write system operation contracts, and possibly to support estimation.

Discipline Artifact Incep. | Elab. | Const. | Trans.

Iteration=> Ii El. En| Gll.Cn| TFLT2

Business Modeling Domain Model 5

Requirements Use-Case Model (SSDs) s ‘ r ‘
Vision 5 ‘ r ‘
Supplementary s i
Specification
Glossary 5 r

Design Design Model 5 r
SW Architecture Document s
Data Model 5 r

{ *- EPENDAELE SOFTWARE 88
iy LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 89
LABORATORY

Chapter 11.
Operation Contracts

B

EPENDABLE SOFTWARE

Business
Modeling

Require-
ments

the domain
objects,
attributes,
and
associations
that undergo
changes

Sample UP Artifact Relationships

Domain Model

starting events to
design for, and
more detailed
requirements that
must be satisfied
by the software

Design

Sale 1 1.* Sales
Lineltem
date
quantity
g Use-Case Model Vision
Process Sale
use 1. Customer
i z:ivees arrives ...
,‘/5. Cashier \‘“
- { | entersitem ;
“Lidentifier. A Glossary
Use Case Diagram Use Case Text
7 system)
:‘:eas fot" events requirements
ol Z‘.:‘.s 3 that must be
il the software
1 - . H I
OPS;??::?‘fQE Casl"'er make ! Supplementary
. b) system 1 NewSale() | Specification
e i A I ——— » re—
™ post-conditions: |oPerations | - |
X~ enterltem N
- . Y. id. quantity) ./}
[———— |
Operation Contracts System Sequence DiagramS/ J
Design Model
‘ 9 | : ProductCatalog | ‘ : Sale ‘
L I T
,/"'enterltem e : | |
{(itemID, quantity) } J | :
TR, 7 7| | 1
P I spec = getProductSpec(itemID) : :
I I 1
: addLineltem(spec, quantity) : _J
T T Ll |

KU KONKUK
UNIVERSITY

91

KU KONKUK
UNIVERSITY

Operation Contracts

« Operation contracts

— Use a pre- and post- condition form to describe detailed changes to objects in a
domain model, as the result of a system operation.

— Operation contracts are usually used in a Design Model for object methods,
— But, can also be used in a domain model as contracts of high-level system

operations.
Operation: Name of operation, and parameters
Cross References: Use cases this operation can occur within
Preconditions: Noteworthy assumptions about the state of the system or
objects in the Domain Model before execution of the operation.
These are non-trivial assumptions the reader should be told.
Postconditions: This is the most important section. The state of objects in the

Domain Model after completion of the operation. Discussed in
detail in a following section.

EPENDABLE SOFTWARE 92
LABORATORY

Example

* An operation contract for the enterltem system operation.

Contract CO2: enterItem

Operation: enterltem{itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale
Preconditions: There is a sale underway.

Postconditions:

- A SalesLineltemn instance sli was created (instance creation).
- sli was associated with the current Sale (assaciation formed).
- sli.quantity became quantity (attribute modification).

- sli was associated with a ProductDescription, based on
itemID match (association formed).

The categorizations such as "(instance creation)" are a learning aid, not properly part of the
contract.

EPENDABLE SOFTWARE 9 3
LABORATORY

I { U {’(N?VRHSH"'

Postconditions

« Postconditions describe changes in the state of objects in the domain model.
— Not actions to be performed during the operation
— Rather, Observations about the domain model objects that are true when the
operation has finished. (— past tense)
» Instance Creation and Deletion

 Associations Formed and Broken
« Attribute Modification

— Only necessary when the outcome of a system operation is not clear from the
use case description.

It will be helpful when there are situations where the details and complexity of required
state changes are awkward or too detailed to capture in use cases.

LABORATORY

% q??.?\,‘
H ﬁ{g%]EPENDABLE SOFTWARE 94
)

KU KONKUK
UNIVERSITY

Example: Enterltem Postconditions

sli.quantity became quantity (attribute modification).

sli was associated with the current Sale
(association formed).

')

X

Process Sale Scenatio

: Cashier - - = ‘System
1]
i makeNewSale o)
] l
T T

loop | [more items] |
i enterltem(itemID, quantity) &
>
| |
! |
description, total i
e mmnmonoo o dsCtplon el :
| ¥
| 1
i I
| |
| |
! endSale -
i "
| I
: total with t: :
otal with taxes
:—< ——————————————————————————————————— I
|
|
! makePayment(amount) >
|

sli was associated with a ProductDescription,

based on itemID match (association formed).

A SalesLineIte/zinstance sli was created (instance creation).

Sales har
Lineltem Records-sale-of
’*qua ntity 0.1
*
P
Stocked-in
1 1
Sale Store
date address
time: 0.1 name
4 1
Houses
Paid-by {1."
9 Register
Captured-on *
Payment]
amount
95

| .
Applying UML: Operations, Contracts, and OC

 [nthe UML,

— Operation : a specification of a transformation or query that an object may be
called to execute

— Method : the implementation of an operation
» Specifies the algorithm or procedure associated with an operation

e Inthe UML metamodel,

— Operations have a signature (name and parameters) and are associated with
constraints (preconditions and postconditions).

— OCL (object constraint Language) iS the formal language for expressing constraints in
UML.

-
S DEPENDABLE SOFTWARE 96
N LAl

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 97
LABORATORY

12

Chapter 12.
Requirements to Design lteratively

It

eratively Analysis and Design

Analysis : Do the right thing
— The requirements and OOA have focused on learning to do the right thing.
— Understanding some outstanding goals, related rules and constraints.

Design : Do the thing right
— Design work will stress do the thing right.
— Skillful designing a solution to satisfy the requirements for its iteration.

In iterative development, a transition from requirements/OOA to
design/implementation occur in each iteration.

KU

KONKUK
UNIVERSITY

99

KU v

I}EPENDAHLE SOFTWARE 1 OO
LABORATORY

Chapter 13.
Logical Architecture and

UML Package Diagrams

I < KONKUK
UNIVERSITY

Sample UP Artifact Relationships

Domain
Business Mool
Modeling g /"

'F\é[_

i Supplementary
Regquire- Wision Specification Glossary
ments]

= B E

The logical architecture is influenced by the =
constraints and non-functional requirements __—
captured in the Supp. Spec.

' e Design Model N

» |
package diagrams =
of the logical
architecture
{a static view) M .—,| Domain
——

- Tech
=== Saervices

 Register ProduciCatalog |

Design interaction diagrams ~ enterllem
{a dynamic view) o litemiD, quantity)
spec = getProductSpec{ itemiD)

ST e

| Pl | =
class diagrams i
(a static view) . | o |

rmakeNewSale)

enteritem...) getProduciSpacy...)
L] 1 |
\

“EPENDAHLE SOFTWARE 1 O 2
LABORATORY

KU v

Logical Architecture

The logical architecture is the large-scale organization of the software
classes into packages, subsystems, and layers.
— But, no decision about how these elements are deployed across different

operating system processes or across physical computers in a network.
— the deployment architecture (— UML Deployment Diagram)

UML Package Diagrams illustrate the logical architecture.
— Can also be summarized as Views in a Software Architecture Document (AD)

Layer

— A very coarse-grained grouping of classes, packages, or subsystems that has
cohesive responsibility for a major aspect of the system
— Organized such that "higher" layers call upon services of "lower" layers

— Can be depicted easily with UML package diagrams

ABLE SOFTWARE 1 03

Layered Architecture

Typical layers in object-oriented systems:
— User Interface layer

— Application Logic and Domain Objects layer

Software objects representing domain concepts that fulfill application requirements
— Technical Services layer

General purpose objects and subsystems that provide supporting technical services,
such as interfacing with a database or error logging.

Usually application-independent and reusable across several systems

ul ‘
not the Java
Swing w.......| Swing libraries, but Web
our GUI classes X
based on Swing \
‘\
P \
// |‘
/
Ourfocus —— — / \
omain ‘ ! [
X i
*‘ *‘ *‘ ’l
!
Sales Payments Taxes /
//
/
7 4
/ s
/
/ //
I -
Technical Services \I(e
1 1 Pl
Persistence Logging RulesEngine
i \ :{:I)EPENDABLE SOFTWARE
| j },{‘ LABORATORY

104

KU

KONKUK
UNIVERSITY

KU v

Software Architecture

« “Asoftware architecture is the set of significant decisions about the
organization of a software system,
— the selection of the structural elements and their interfaces by which the

system is composed, together with their behavior as specified in the
collaborations among those elements,

— the composition of these structural and behavioral elements into progressively
larger subsystems,

— and the architectural style that guides this organization - these elements and
their interfaces, their collaborations, and their composition.”

Booch, G., Rumbaugh, J, and Jacobson, I. 1999. The Unified Modeling Language User Guide.

™ %
I‘s f;:DEPENDABLE SOFTWARE 1 05
Ay LA

Applying UML: Package Diagrams

« UML package diagrams are often used to illustrate the logical architecture
of a system.

Presentation |

Swing ©. L
g not the Java

ProcessSale i .| Swing libraries, but
Frame our GUI classes
based on Swing

Text C“; %

= = “k.., | used in quick
rocessSale experiments
Console

Domain |
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy <¢infc9ﬁace>>
Factory |SalePricingStrategy

ServiceAccess Payments

Servicas «interface»
Fact CreditPayment |CreditAuthorization
actory ServiceAdapter

Inventory POSRuleEngine Taxes

«interface» y «interface»
lInventory Adapter ROSRMcEnmnehrcads ITaxCalculatorAdapter

Technical Services |

Persistence — — A general —
O+, .| purpose third-
Log4J Jess . SOAP
DBFacade party rules
. engine.
A partial LA of NextGen POS g
-‘DEPENDABLE SOFTWARE 1 06

LABORATORY

Design with Layers

 Example: Common Layers in an Information Systems Logical Architecture

] GUlwindows
1] reports ul
] speech interface (AKA Presentation, View)
] HTML, XML, XSLT, JSP, Javascript, ...
more
. app.

] handles presentation layer requests specifi
J work_ﬂowt i Application H

session state

- - (AKA Workflow, Process, 1

] wmdovy/ page transitions : . Mediation, App Controller) E 1
] consolidation/transformation of disparate 21

data forpresentation & |

o1

] handles application layer requests © l|
] implementation of domain rules Domain \.',/
] domain services (POS, Inventory) (AKA Business, Applicati

- services may be used by just one on Logic I\)Iodel)

application, but there is also the possibility ’

of multi-application services

| ———

] very general low-level business services Busi infrastruct

used in many business domains AKA Lusuressl g ra_s rucSure_
| CurrencyConverter ¢ ow-level Business Services)

I ——

1 (relatively) high-level technical services Technical Services (AK

and frameworks A Technical Infrastructure, Hi
] Persistence, Security gh-level Technical Services)
] low-level technical services, utilities, ! Foundation

and frameworks (AKA Core Services, Base Services, Lo
] data structures, threads, math, (evel TactilEal Seniceslifasiics)

file, DB, and network /O w-level Technical Services/Infrastructure

O ———— width implies range of applicability 1y, 107

LABORATORY

Mapping Code Organization to Layers and uUMESES]
Packages

* Most popular OO languages provide support for packages.

T // --- UI Layer
I com.mycompany .nextgen.ui.swing
T — com.mycompany .nextgen.ui.web
Swing -......_| Swing libraries, but Web
our GUI classes .
based on Swing \ // --- DOMAIN Layer
o \ // packages specific to the NextGen project
: /' ! com.mycompany .nextgen.domain.sales
Domain I < | com.mycompany . nextgen.domain.payments
I
'—] ,—] “ J!
| Sales ‘ ‘ Payments ‘ Taxes /’
// // --- TECHNICAL SERVICES Layer
- ,/ // our home-grown persistence (database) access layer
f 7 com.mycompany . service.persistence
1 P .
Technical Services I X < // third party
—F org.apache.log4j
== org.apache.soap.rpc
Persistence ‘ Logging ‘ RulesEngine
// --- FOUNDATION Layer
// foundation packages that our team creates
com.mycompany.util

EPENDABLE SOFTWARE 1 08
LABORATORY

Connections Between SSDs, System OperatioRSE=
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) ONto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

:System enterltem()
: Cashier ProcessSale endSale()
Frame

ul | -
Swing makeNewSale() %

makeNewSale()

1
I

I
>,
enterltem(id, quantitv)’:
! makeNewSale()

: Cashier

0

makeNewSale()
enterltem()

< _description, total _ _ _i enterltem() ¢
| | - endSale() ©.
Domain

i !
|

|

: sndsalef) > Register

! I

I I

! |

|

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Ul layer

':ll 1 %DEPENDABLE SOFTWARE 1 09
! i LABORATORY

KU v

I}EPENDAHLE SOFTWARE 1 1 O
LABORATORY

13

14

Chapter 14.
On to Object Design

KU v

Designing Objects: Static vs. Dynamic

« Two kinds of object models:
— Static models help design the definition of packages, class names, attributes,
and method signatures (but not method bodies).

« Example: UML class diagram
* Looks like the most important model.

— Dynamic models help design the logic, the code, or the method bodies.
« Example: UML interaction diagrams (sequence diagram, communication diagram)
» Tend to be the more interesting, difficult, and important diagrams to create.

* Relationship between static and dynamic modeling:
— Spend a short period of time on interaction diagrams, then switch to a wall of

related class diagrams.
\

i 'b e ' l

iaGure . F"‘“:l I |

‘b L faceValug II A !
e

g =0 .‘
!]

UM\ Cless Dmﬁw\ UML 3ehutnu.®il bﬂ\-\

112

KU v

Static Object Modeling

« People new to UML tend to think that the important diagram is the static-
view class diagram.
— But, static and dynamic modelling are all important equivalently.
— The most common static object modeling is with UML class diagrams.

« Static UML Tools:
— Class diagram
— Package diagram
— Deployment diagram

113

KU v

Dynamic Object Modeling

» Most useful design work happens while drawing the UML dynamic-view
interaction diagrams.
— During dynamic object modeling (such as drawing sequence diagrams), we really think the

exact details of what objects need to exist and how they collaborate via
messages and methods.

* Dynamic UML Tools:
— Interaction diagrams (Sequence diagram)
— Statechart diagram
— Activity diagram

N B
I'S ;?EPEI;I_?ABLE SOFTWARE 1 1 4

Object Design Skill over UML Notation Ski

 The object design skills are matter, not knowing how to draw UML.
— Since, Drawing UML is a reflection of making decisions about the design.

« Fundamental object design requires knowledge of:
— Principles of responsibility assignment (GRASP)
— Design patterns

Pattern/ D o i
S escription
Principle
winterfacens Ada pte]—
Information A general principle of object design and responsibility assignment? mr
Expert +operafion|] Type: Structural
Assign a responsibility to the information expert—the class that has the information neces- .
sary to fulfill the responsibility. /—’% Ot s s o S
another interface dients expect. Lets
Creator Who creates? (Note that Factory is a common alternate solution.) ContreteAdapler classes work together that couldn't
Adaptee otherwise because of incompatible
Assign class B the responsibility to create an instance of class A if one of these is true: -adaptee e - interfaces.
1. B contains A 4. B records A [aparation]) Heexil)
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A
GRASP Design Pattern of GoF

! EPENDABLE SOFTWARE 1 1 5
LABORATORY

KU v

I}EPENDAHLE SOFTWARE 1 1 6
LABORATORY

Chapter 15.
UML Interaction Diagrams

Interaction Diagrams

* Interaction diagrams illustrate how objects interact via messages.
— Dynamic object modeling

— Sequence diagram

— (+) Communication diagram

— (+) Interaction overview diagram
— (+) Timing diagram

KU v

118

4 Interaction Diagrams

SHident :E-Learning

:Database

login(user, pw)

check(user, pw)

check: "ok"

-
>

|
I
|
L
|
|
|
|
|
|
I
I
|
| I
| |
| login: "ok i
< 1
I
l
|
|

I
getCourses() i
I
|

Sequence diagram

:Student

1: login(user, pw)
2: getCourses()

o ;e o i . i i

:Student

logged out

logged in

KU KONKUK
UNIVERSITY

logi

n(user, pw)

getCourses

:E-Learning
System

busy
idle

login: "ok v

check(user, pw)

N

check: "ok"

:E-Learning —

System [4. check(user, pw)

:Database

Communication diagram

EPENDABLE SOFTWARE
LABORATORY

:Database

active

Y

I
I
I
I
I
I
I
h
I
I
I
I
I
I

Timing diagram

sd Log In /

:Student

:E-Learning
System

:Database

)y

1
ilogin(user, pw
1

| getCourses()

check: "ok"

check(user, pw)
— P

< _________________

e i

[else]
®

L{authorized]

sd Forum /

Interaction Overview diagram

119

KU v

Sequence and Communication Diagram

+ Sequence diagrams
— model the collaboration of objects based on a time sequence

« Communication diagrams
— focus on showing the collaboration of objects rather than the time sequence

tA myB : B
I r public class A
1 |
o doOne | ! { .
i private B myB = new B();
doTwo >
. public void doOne ()
doThree i : {
myB.doTwo () ;
H myB.doThree() ;
] 1 }
// ..
doOne il sk }
1: doTwo
2: doThree v
myB : B
o ' 120

Example : Sequence/Communication Diagrams

* An example scenario:

KU KONKUK
UNIVERSITY

1. The message makePayment is sent to an instance of a Register.

2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Example Sequence Diagram: makePayment

Register

- L
!

. makePayment(cashTendered) ’

makePayment(cashTendered)

Example Communication Diagram: makePayment

direction of message

makePayment(cashTendered) L

:Register

1: makePayment(cashTendered)—>

_ create(cashTendered) _)| . pgymen

E$ LABORATORY

:Sale

1.1: create(cashTendered) ¢

:Payment

public class Sale
{

private Payment payment;

public void makePayment(Money cashTendered)
{

payment = new Payment(cashTendered) ;

/7.

// ..

121

KU v

Basic Sequence Diagram Notations

* Lifeline boxes and lifelines
« Messages

: Reqgister : Sale
I I
0 -

* i doA -
doB !

a found message A g
whose sender will not |
be specified = doC -

- doD

execution specification k
bar indicates focus of

control typical sychronous message

shown with a filled-arrow line

L R
| i)

lg %]:)EPEIII_ZABLE SOFTWARE 1 2 2
0
A

* Lifeline box

‘ KI]' KONKUK
UNIVERSITY

— Represent the participants in the interaction, informally and practically
* object(s), class, subsystem, component, etc.

lifeline box representing an
unnamed instance of class Sale

:Sale

lifeline box representing an
instance of an ArrayList class,
parameterized (templatized) to
hold Sale objects

sales:
ArraylList<Sale> | ©O.
T

EPENDABLE SOFTWARE
LABORATORY

lifeline box representing a
named instance

' L
{ related
5 example

s1: Sale

lifeline box representing
one instance of class Sale,
selected from the sales

lifeline box representing the class
Font, or more precisely, that Fontis
an instance of class Class —an
instance of a metaclass

«metaclass»
Font

ArrayList <Sale> collection

sales[i]: Sale

1
|
|
|
|
|
I

List is an interface

in UML 1.x we could not use an
interface here, but in UML 2, this (or
an abstract class) is legal

x : List

123

l{ l l KONKUK
UNIVERSITY

Order of Messages

... on one lifeline ... on different lifelines
| a i | a
| —— | ——
. C | << Happens before >> c | :

]

Traces:
TO1:a—=>c¢
T02:c—a

Traces:
TO1:a—>c

... on different lifelines which exchange messages

Traces:
TOl:a—=b—->c

ugEPENDABLE SOFTWARE 1 24
LABORATORY

3 Types of Messages

Synchronous message

Sender waits until it has received a response message
before continuing.

— An execution specification is inserted at target.

Asynchronous message

Sender continues without waiting for a response message.

Response message

May be omitted if content and location are obvious

KU v

=
| >
=
=
R -

125

]}EPEN

Message Syntax

KONKUK

UNIVERSITY

return = message (parameter: parameterType) : returnType

- For example:
initialize(code)
initialize
d = getProductDescription(id)
d = getProductDescription(id:ltemID)

d = getProductDescription(id:ltemID) : ProductDescription

: Sale

|
A/i/ Recieve event
>

} " ———Fxecution specification

: Register ‘

1

doX |

4]
—
'_‘_| d1 = getDate
Send event /‘/ getDate
e abate _________

DABLE SOFTWARE
LABORAT!

‘ORY

126

Rl

Other Types of Messages

 Found message
— Sender of a message is unknown or not relevant. found |
o

 Lost message
— Receiver of a message is unknown or not relevant.

« Time-consuming message l

— Message with duration : Express that time elapses
between the sending and the receipt of a message

— Usually messages are assumed to be transmitted |
without any loss of time. :\:

G :StudentAdmin
System
lecturer ' :
| enroll I
:Professor | | HI
T
: | |
announcement(lecture) | __/,/4
@< i _ {2..3 days} | ! e '
spamEmail P b, o :
|
]

(} DepenDABLE SOFTWARE 127
N LABORATORY

Singleton Objects

« There is only one instance of a class instantiated : a singleton object
— Implying to the Singleton design pattern

Register 1
=g : Store ! the 1" impliesthisisa
T Singleton, and accessed
i doX ! via the Singleton pattern

ey, S|

I
: doA
]
]

KU KONKUK
UNIVERSITY

128

Instance Creation

 To create an instance of a class
— The UML mandates dashed line.

— The message name create is not required ; anything is legal.

* But, it's a UML idiom.

. Reqgister : Sale

makePayment(cashTendered) -

Y b Y
i %DEPENDABLE SOFTWARE

K/

L) o

LABORATORY

nofe that newly created L
objects are placed at their
creation "height”

authorize

create(cashTendered) » : Payment

I { U {’(N?VRHSH"'

129

I { U {’(N?VRHSH"'

Object Destruction

« To show explicit destruction of an object

— The <<destroy>> stereotyped message, with the large X and short lifeline
indicates explicit object destruction

- Sale
L ¢ :
_ _create{cashTendered) - Payment L.
| the «destroy» sterectyped
> message, with the large
| .. # and short lifeline
adestroy» »X O indicates explicit object
destruction

| N

1)
H ﬁ[g%]EPENDABLE SOFTWARE 1 30
) 4

LABORATORY

KU KONKUK
UNIVERSITY

Combined Fragments and Operators

» 12 predefined types of operators

— Model various control structures with frames
« Frames : regions or fragments of the diagrams, which has an operator and a guard

— Frames are nested.

Operator Purpose
= alt Alternative interaction
g § opt Optional interaction
§ £ loop Repeated interaction
o break Exception interaction
- seq Weak order
§ .g‘ strict Strict order
§ -§ par Concurrent interaction
8 ® critical Atomic interaction
ignore Irrelevant interaction
g § consider Relevant interaction
E § assert Asserted interaction
i neg Invalid interaction

EPENDABLE SOFTWARE

alt Fragment

:StudentAdmin

« To model alternative sequences Sident System ‘Database

register(matNo, exam)

enter(matNo, exam)

« Similar to switch statement in Java

|

|

|

|

— Guards are used to select the one :
path to be executed. |
|

I

|

|

status = enter: status

_‘
®
Q
w
=
]
o
O=
x
2N SO IS] [P T T L

i

|

|

|

g

|

!

alt [status == ok] i

|

. |

— Multiple operands | oomTTmmTommooos |
""""" ['s’t;t’ds};'éi\léi{i;gﬁ;{f};;j':""""""""""""'*:""""

« Guards | regster™wr | i

| | |

— Modeled in square brackets opt_J Iregister on WL ==true] | i

- defaUIt: true ! register(matNo, exam) J :

: I T enterWL(matNo, exam) :

— predefined: [else] | e wrvar——

| regstertoe I |

. n . | | |

* Guards have to be disjoint to , | :
. T T ST TR L e EE L R R PR e L EEE L R T SEEEEEEES

avoid non-deterministic behavior. | felse] i i

| __ register:"eror___| i

! | !

| i ?IV%T‘?]EPENDABLE SOFTWARE 1 3 2

| y LABORATORY
LY

opt & KONKUK
n- UNIVERSITY

opt Fragment

:StudentAdmin

« To model an optional sequence Sident System ‘Database

i
register(matNo, exam) :
|

enter(matNo, exam)

L]

« Similar to if statement without else

status = enter: status

| i
| |
| |
| I
| | |
| R e it
branch | | i
alt | [status == ok] | |
— Exactly one operand | | |
. : : | ___register: "ok’ | :
— Actual execution at runtime is | | i
-------- i et EEEEETTE
dependent on the guard. | [status == waiting lst free] |
L_____re_gi_st_efjvzli____j
|
opt ; [register on WL == true]
register(matNo, exam) "

|
|
|
|
|
|
i
|
|
|
|
enterWL(matNo, exam) |
g

enterWL: "ok” |

|

|

|

1

|

|

|

|

|

|

|

1

1

register: "ok"
K ________________

.{
|
l
|

......................... S P
|
|
|
|

.I
|
t
1

M%EPENDABLE SOFTWARE 1 3 3
LABORATORY

loop(...)

loop Fragment

« To model repeatedly-executed sequences
— Exactly one operand

« Keyword loop followed by the minimal/maximal number of iterations
— (min. .max) or (min,max)
— default: (*) .. no upper limit

 Guard

— Evaluated as soon as the minimum number of iterations has taken place
— Checked for each iteration within the (min,max) limits

— If the guard evaluates to false, the execution of the loop is terminated.

Notation alternatives:

loop(1,*) / | loop (3,8) = loop (3..8)
loop is executed at I [1o0p (8,8) = loop (8)
least once, as long as [a<1] } > 7 —,l £) =1 0. *
a<1 is true. < | oop = loop(*) = loop(0,*)
] |
| >
I

'fl‘s-‘ f;:DEPENDABLE SOFTWARE 134
Ay LA
A

break Fragment

« Similar to exception handling
— Exactly one operand with a guard

» If the guard is true:

— Interactions within this operand are
executed.

— Remaining operations of the
surrounding fragment are omitted.

— Interaction continues in the next higher
level fragment.

break e
hU 1(.0N]\m

A ‘B
_a |
seq i
I
break [a<1] :
I
I I
I b \I
| 7
< |
d4
! !
e

135

loop and break Fragment - Example

:Student SEILE LTl :Database
System

loop(1,3) J [incorrect password]

login(name, pw)

check(name, pw)

I
I
I
I
I
I
I
I
f
I

error message

register(matNo, exam)

enter(matNo, exam)

) AN S A . A ——

|

I

I

I
>
I

I

i

i
break J [incorrect password] i
I

|

|

I

I

|
g
I

|

s ——r——t—px——

LABORATORY

“ 5\‘?,_\‘
‘ Lg ;:I)EPENDABLE SOFTWARE ’I 3 6
) 4

seq_

[Tl s

seq Fragment

 Default order of events

Weak sequencing:
1. Events on different lifelines from different operands may come in any order.

2. Events on the same lifeline from different operands are ordered such that an
event of the first operand comes before that of the second operand.

A ‘B e D
seq / | | |
| 3]' % : Traces: AN
:ﬁ { : T0Ol:a-b->c—->d—e
&— 1 | T02:a—>c—>b->d-e
: 1' {é} T03:c>a—->b->d-e
| J 1 l
| Ai |
| 1 I e |
| 1 =

N B
I'S ;?EPEI;I_?ABLE SOFTWARE 1 37

strict Fragment

 Sequential interaction with order

— Messages in an operand that is higher up on the vertical axis are always
exchanged (executed) before the messages in an operand that is lower down on
the vertical axis.

A ‘B C 1)
strict / : : {
I a | | |
> | | _
b I | | Traces:
W a— S L — L) TOl:a»b->c->d-e [T
| | | l
A
e,
| | S

II‘S EDEPENDABLE SOFTWARE 1 38
N La
A

KU KONKUK
UNIVERSITY

strict Fragment - Example

:StudentAdmin lecturer

:Student Silien Professor :Printer
strict J,] i |
| | I I
'l register(exam) >: : :

I | I I
------- s i s sl s s) it o et s
I I | I
| | | rint(exam |
I | I print() P

WE %

() DerenpasLE SOFTWARE 139
B LABORATO RY
AR E g

par Fragment

» To set aside chronological order between messages in different operands
— Execution paths of different operands can be interleaved.

— Restrictions of each operand are respected, but the order of the different

operands is irrelevant
» Concurrency, no true parallelism

‘A B C D
par | E i
| | |
I a | | |
ITI | |
I | | |
e | |
o] s i e s o o i ——
l | I ¢ |
1 | " <
| | | |
I <o |
l | I e |
1 | P
1 I I
|]]

Traces:

TO1:a—=>b—->c—>d~->e
T02:a—=c—>b—>d—e
T03:a—=c—>d—>b—e
T04.a—-c—>d—>e—>b
T05:.c>a—>b—>d—e
T06:c>a—->d—>b—e
T07:c>a—>d—>e—>b
T08:c~>d—~>a—->b—e
T09:c>d—>a—>e—>b
T10:c>d—>e—>a->b

140

critical Fragment

« Atomic area in the interaction

— To make sure that certain parts of an interaction are not interrupted by

unexpected events

— Order within critical is the default order seq.

Traces: AN

TOl:a—=>b—>c—>d—e
T02:a>c—>d—>b~-e
T03:a—»c—>d—>e—Db
TO4:.c>d—->a—>b—>e
T05:c~>d—>a—>e—>b
T06:c~>d—>e—>a—->b

critical

K

KONKUK
UNIVERSITY

A ‘B C ‘D
par | | |
a | | |
— | |
b
P e e et oy
critical i i |
| /: d | : |
| < |
| | e |
| | >

141

B

Interaction Reference

* Integrates one sequence diagram in another sequence diagram

o doX'

EPENDABLE SOFTWARE
LABORATORY

CA

B G

doB

I
|
|
j_ doB
|

T
|
|
|
|
|
|

authenticate(id)> ref /" AuthenticateUser
]

ref DoFoo

-
| (A

interaction occurrence
note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

sd AuthenticateUser)
B :C |
i i
authenticate(id
S |
: doM1 H
| |
doM2
| P
| |
| |
| |
sd DoFoo /
:B :C
T T
| |
doX
| >
doY
| >
: doZ ’1:
|
| |

KU KONKUK
UNIVERSITY

142

Iteration Over a Collection

« Sending the same message to each object to iterate over all members of a
collection (such as a list or map).
— The selector expression (as lineltems[i] in the lifeline) selects one object from a
group.
— Lifeline participants should represent one object, not a collection.

lineltems]i] : B
SalesLineltem This lifeline box represents one

—ar- instance from a collection of many
SalesLineltem objects.

: Sale

t = getTotal >
lineltems]i] is the expression to
select one element from the
collection of many
SalesLineltems; the i" value
refers to the same “i" in the guard
in the LOOP frame

loop / [i<liheltems.size]

|

l

|

|

{

|

st = getSubtotal ’:

— I
e+ :
‘ |
|

" an action box may contain arbitrary language k
statements (in this case, incrementing ‘i')

itis placed over the lifeline to which it applies

g,
| ¥

.g%]EPENDABLE SOFTWARE 1 43

o

'IL

| LABORATORY
EUS S

T

Messages to Classes to Invoke Static (or ClasS}EE=d
Methods

* You can show class or static method calls by
— using a lifeline box label that indicates the receiving object is a class, or
— more precisely, an instance of a metaclass

message lo class, ora
static method call

: Foo emetaclass»

Calendar
T T

I =
< locales = getAvailableLocales >
]
I]
|
|

e doX

public class Foo
{
public void doX()
{
// static method call on class Calendar
Locale[] locales = Calendar.getAvailablelocales() ;

/] ..

- 4”
i f;I)EPENDABLE SOFTWARE 1 44
Yy LABORATORY

KU v

Basic Communication Diagram Notations

 Link and Message

— A connection path between two objects indicating some form of possible
navigation and visibility between the objects
— All messages flow on the same line, and many messages may flow along a link.

« Each message between objects is represented with a message expression and small
arrow indicating the direction of the message.

» A sequence number is added to show the sequential order of messages in the current
thread of control.

first k sacond k
: third k
msgl = . A 1: msgd —= ‘B
11:msg3 ¥
21:msgs 4
2. msgd - C
faurth L fifth L
2.2 msgb

(} DepenDABLE SOFTWARE 145
\ LABORATORY

KU v

Timing Diagram

« Timing diagram
— Shows state changes of the interaction partners that result from the occurrence
of events
* Vertical axis: interaction partners
« Horizontal axis: chronological order

€ logged in
5
2 loggedout | getCourses
2 login(user, pw) :
|
|
= tlogin: "ok"
=
c E busy \4 ' Yy
52 i
o (‘,”>)~ idle !
1 I
L check(user, pw) ' check: "ok"
|
l
|
:
active Yy |

‘Database

- 4”
i f;I)EPENDABLE SOFTWARE 1 46
LYy LABORATORY

b\

KONKUK

UNIVERSITY

duration constraint

sd Website Timing) \L{znn._sm ms}
state or condition b
s Sending response
c timeline \ state change
& Processing \4 \ "
= \
% Waiting \
= \
[
e {0..400 ms} [
lifeline L o == \ HTTP response
\H“"‘---b._ﬁ PfDEE'SEiﬂQ timeline {5021:"} rns} ll't reply message
o \ - |
i Idle \ \
e Y \
\ “H
Resolve URL/&\ \ HTTP request ||
% Waiting /’ {100..500 ms}
2 Processing \ .
e Send < event \
£ idle synchronous request event or \
message stimulus \
2 F’_/ Show page ',
i
\
— i
lifeline o 5
e Idle Waiting X Viewing
]
=

Z//nss 1s 155 2s 255

state, condition or value tick mark value timing ruler

]}EPENDAHLE SOFTWARE 1 47
LABORATORY

KU v

Interaction Overview Diagram

* Interaction overview diagram
— Visualizes order of different interactions
— Allows to place various interaction diagrams in a logical order
— Basic notation concepts of activity diagram

sd Log In /

: :E-Learning :
:Student System :Database

i
login(user, pw) _ i

H ' ’i check(user, pw) >

i
|
| |
I]
i check: "ok" I
|
|
|
|
|
|
|

P [else] \@

|
|

login: "ok”" e S S e 4 [authorized]
I

sd Forum /

N B
I'S ;?EPEI;I_?ABLE SOFTWARE 1 48

KU v

I}EPENDAHLE SOFTWARE 1 49
LABORATORY

15

16

Chapter 16.
UML Class Diagram

Applying UML: Common Class Diagram Notation

3 common k
camparimeanis

1. clazsifier name
2. attributes

3. operations

an interface
shown with a
keyword

winterfacex
Runnable

run()

interface h
implementation

and

subelassing

SuperclassFoo
ar
SuperClassFoo { abstract }

- classOrSlaticAttribute - Int

+ publicAttribute : String

- privateAdtribute

assumedPrivateAttribute
islnitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMaylLegallyBeMull : String [0..1]
finalConstantAttribute : Int = & { readOnly }
fderivedAtiribute

+

+ publicMethod()

assumedPublichMethod()

- privateMethod()

protectedMethod()

~ packageVisibleMethod()

wconstructors SuperclassFoo(Long)
methodWithParms(parm? : String, parm2 : Float)
methodRetumsSomething() : VeggieBurger
method ThrowsException() {exception I0Exception}
absiraciMethod()

abstractMethod2()} { abstract } # alternate
finalMethod() { leaf } /' no override in subclass
synchronizedMethod() { guarded }

* L "

I

officially in UML, the top format is h
used to distinguish the package
name from the class name

unofficially, the second alternative
is commeon

O java.awt::Font
or
java.awt,Font

plain : Int = 0 { readOnly }
bold : Int = 1 { readOnly }
name : Slring
style - Int=0

Font(name : String) . Fonl
getName() ; String

| Fruit
dependency H

\‘_\\ | J’ ~ ,"'!
2 S8 o /! e
e |,
- 1
SubclassFoo PurchaseOider
o 1}
run() arder

- ellipsis “..." means there may be elements, but not shewn
- a blank compartment officially means “unknown” but as a
convention will be used to mean “no members”

EPENDABLE SOFTWARE
LABORATORY

association with [S
multiplicities

151

KU KONKUK
UNIVERSITY

Design Class Diagram

The same UML class diagrams can be used in multiple perspectives.
— In a conceptual perspective, Domain model
— In a design perspective, Design Class Diagram (DCD)

Domain Model) Sale
Register 1 Captures 11
conceptual !'"ée lete - Bool
perspective ;f‘mg:'" pebogean
Register Sale
Design Model 1 | time
isComplete : Boolean
DCD; software endSale() currentSale | ftotal
perspective enterltem(...)
makePayment(...) makeLineltern(...)

EPENDABLE SOFTWARE 1 52
LABORATORY

I { U {’(N?VRHSH"'

Object

 Individuals of a system

* Alternative notations:

maxMiller maxMiller:Person :Person

maxMiller maxMiller:Person :Person
firstName = "Max" firstName = "Max" firstName = "Max"
lastName = "Miller" lastName = "Miller" lastName = "Miller"
dob = 03-05-1973 dob = 03-05-1973 dob = 03-05-1973

= No object name

g,
| ¥

.g%]EPENDABLE SOFTWARE 1 53

o

'IL

0 LABORATORY
EUS S

T

T %
I

i f;I)EPENDABLE SOFTWARE

S

<M

Object Diagram

Depicts objects and their relationships at a specific moment in time

LABORATORY

helenLewis:Student

firstName = "Helen"
lastName = "Lewis"
dob = 04-02-1980

matNo = "9824321"

oom:Course

name = "OOM"
semester = "Summer"
hours = 2.0

mikeFox:Student

firstName = "Mike"
lastName = "Fox"
dob = 02-01-1988
matNo = "0824211"

iprog:Course

name = "|IPROG"
semester = "Winter"
hours =4.0

lh1:LectureHall

name = "LH1"
seats = 400

KU v

154

From Object to Class

» Aclass is a construction plan for a set of similar objects of a system.

— Objects are instances of classes.

» Attributes: structural characteristics of a class
— Different value for each instance (object)

» Operations: behavior of a class

— Identical for all objects of a class
— not depicted in object diagram

Person

maxMiller:Person

firstName: String
lastName: String
dob: Date

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

Class name 1

Attributes

Operations

—_—

—

KU v

Course

name: String

semester: SemesterType

hours: float

getCredits(): int

getLecturer(): Lecturer

getGPA(): float

155

KU s

Attribute Syntax - Visibility

Person

+ firstName: String
lastName: String
dob: Date

‘ address: String[1..*] {unique, ordered}
ssNo: String {readOnly}
/age: int
password: String = "pw123"

~ personsNumber: int

() DePENDABLE SoFTWARE
A LABORATORY

 Who is permitted to access the attribute.

+ ..

. public: everybody
.. private: only the object itself
...

.. package: classes that are in the same package

protected: class itself and subclasses

156

Rl

Attribute Syntax - Derived Attribute

Person e Attribute value is derived from other attributes or
firstName: String associations.
lastName: String .
dob: Date — age: calculated from the date of birth

address: String[1..*] {unigue, ordered}
ssNo: String {readOnly}

pa'ssword: String = "pw123"
personsNumber: int

1 y N
'I'S SéDEPENDABLE SOFTWARE ’I 5 7
0y '” i LABORATO! RY

Attribute Syntax - Name

Person

rstName: String
astName: String
lob: Date

ress: String[1..*] {unique, ordered}

ss lo: String {readOnly}

e int

l“ ord: String = "pw123"

bersonsNumber:_int

Name of the attribute

KU v

158

KU s

Attribute Syntax - Type

Person « Types of attributes
firstName: String — Data types
lastName: String L
dob: Dat | * Primitive data type
::ﬂf‘ss ;fjf‘;i {;é;a()]rf;?'q“e‘ Qraiered) — Pre-defined: Boolean, Integer, Unlimited Natural, String
fage:int — User-defined: «primitive»
ngfsgf:ﬂ;;ﬁgé; e pates — Composite data type: «datatype»

« Enumerations: «xenumeration»

«primitive» «datatype» «enumeration»
Float Date AcademicDegree
round(): void day bachelor
month master
year phd

— User-defined classes

1 1 %j:DEPENDABLE SOFTWARE 1 59
i LABORATORY

KU v

Attribute Syntax - Multiplicity

Person * Number of values which an attribute may contain
firstName: String — Default value: 1

lastName: String
dob: Date
address: String| {unique, ordered}

ssNo: String {readOnly} ° Notation: [mln maX]
/age: int . N
— no upper limit: [*] or [0..]

password: String = "pw123"
personsNumber: int

N B
I'S %‘DEPENDABLE SOFTWARE 1 60
) B i LABORATO! RY

KU v

Attribute Syntax - Default Value

Person « Default value
firstName: String — Used if the attribute value is not set explicitly by the user

lastName: String

dob: Date

address: String[1..*] {unigue, ordered}
ssNo: String {readOnly}

/age: int

password: String = "‘pw123
personsNumber: int

b -
() DeeenpaBLE SOFTWARE 161
LNy LABORATO RY

< 4

Rl

Attribute Syntax - Properties

Person * Pre-defined properties
LEbEE g::::g = {readOnly} ... value cannot be changed
dob: Date = {unique} ... no duplicates permitted
Z’Sﬂl‘?ssiri‘;‘”g“*? i » {non-unique} ... duplicates permitted
b She = non) = {ordered} ... fixed order of the values
e = {unordered} ... no fixed order of the values

= Attribute specification
» Set: {unordered, unique}
= Multi-set (Bag): {unordered, non-unique}
» Ordered set: {ordered, unique}
» List: {ordered, non-unique}

I'S (EI)EPENDABLE SOFTWARE 1 62
LAl

Rl

Operation Syntax - Parameters

Person

+ getName(o >tring, out String): void
+ updateLastName(newhName: String): boolean
+ getPersonsNumber(): int

= Notation similar to attributes

= Direction of the parameter

= in ... input parameter

» When the operation is used, a value is expected
from this parameter

= out ... output parameter

= After the execution of the operation, the parameter
has adopted a new value

= jnout : combined input/output parameter

163

KU KONKUK
UNIVERSITY

Operation Syntax - Type

Person = Types of the return value

getName(out fn: String, out In: String): void
updateLastName(newName: String): b«

getPersonsNumber(): i

K
[{ DEPENDABLE SOFTWARE 164
N Lasorato RY

<M

KU v

Operations and Methods

 Operations

— The full official format of the operation syntax :
« visibility name (parameter-list) {property-string}

— Guidelines
« Assume that the new version includes a return type.
» Operations are usually assumed public if no visibility is shown.

* An operation is not a method.

— A UML operation is a declaration, with a name, parameters, return type,
exceptions list, and possibly a set of constraints of pre-and post-conditions.

— Not an implementation - rather, methods are implementations.

“ 5\37-3,_\‘
‘ i f,'I)EPENDABLE SOFTWARE 1 65
N LABORATO! RY

A

KU KONKUK
UNIVERSITY

Note Symbols

« A UML note symbol may represent several things, such as:
— UML note or comment, which by definition have no semantic impact
— UML constraint, in which case it must be encased in braces {...}
— Method body : the implementation of a UML operation

. Register
amethod» k
{1 pseudo-code or a specific language is OK
public void enterltem(id, gty)
{ endSale()
ProductDescription desc = catalog.getProductDescription(id); centerltem(id, aty)
sale makelineltemi{desc, gty); makeNewSale()
} makePayment{cashTenderad)

T h
‘ L‘l‘i‘;ﬁEPENDABLE SOFTWARE 1 66

‘ i LABORATORY
<Y

KU v

Class Variable and Operation

* Instance variable (= instance attribute) : attributes defined on instance level

« Class variable (= class attribute, static attribute)
— Defined only once per class, i.e., shared by all instances of the class
— Example: counters for the number of instances of a class

« Class operation (= static operation)
— Can be used, if no instance of the corresponding class was created
— Example: constructors, counting operations, etc.

class Person {

Person
‘ public String firstName;
+ firstName: String public String lastName;
+ lastName: String ivate Date dob:
- dob: Date # private Date dob;
address: String['] protected String[] address;
pNumber: int private static int pNumber;
+ getDob(): Date public static int getPNumber() {...}

public Date getDob() {...}

LABORATORY

“ 5\‘?,_\‘
‘ Lg ;:I)EPENDABLE SOFTWARE 1 67
) 4

KU v

Operations to Access Attributes in DCDs

» Accessing operations to retrieve or set all (private) attributes
— Example: getPNumber() and setPNumber ()

Person

+ firstName: String
+ lastName: String
— dob: Date

address: String[*]

+ getDob(): Date

— Often excluded (or filtered) from the class diagram, since they are too many.
For n attributes, there may be 2n uninteresting getter and setter operations.

— Most UML tools support filtering their display.

% y N
'I'S SéDEPENDABLE SOFTWARE 1 68
LYYy Lal

<

Different Levels of Class Detail

I { U {’(N?VRHSH"'

Coarse-grained

Fine-grained

Course

Course

Course

name
semester
hours

+ name: String

+ semester. SemesterType
- hours: float

- /credits: int

getCredits()
getlLecturer()
getGPA()

+ getCredits(): int

+ getlLecturer(): Lecturer

+ getGPA(): float

+ getHours(): float

+ setHours(hours: float): void

169

Types of Class Relationship

<Weaker (lass relationship Stronger (lass relationshib
Dependency Association Aggregation
<= .,
Dashed Arrow Simple Connecting Line | Empty Diamond Arrow

When objects of one | When objects of one | When one class owns but When one class When one classisa
class work briefly with class work with shares a reference to contains objectsof | type of another class
objects of another class | objects of another class| objects of another class another class

for some prolonged
amount of time

EPENDABLE SOFTWARE
LABORATORY

170

Dependency

Models weakest possible relationships between classes

KU v

— Aclass needs to know about another class to use objects of that class briefly.

— Not used often in class diagram, but does in component diagram.

The Dependency Arroh

Userinterface

BlogEntry

171

KU KONKUK
UNIVERSITY

Dependency - Example

 Example:

— The updatePriceFFor method receives a ProductDescription parameter object and
then sends it a gefFPrice message.

— Therefore, the Sale object has parameter visibility to the ProductDescription, and
message-sending coupling, and thus a dependency on the ProductDescription.

— If the latter class changed, the Sale class could be affected.

the Sale has parameter visibility to a LN
ProductDescription, and thus some kind of
dependency]
ProductDescription public class Sale
1 {
— | | public void updatePriceFor(ProductDescription description)
L L {

Money basePrice = description.getPrice();

/7.

updatePriceFor{ ProductDescriplion) l
[~ SalesLineltem }

S i I

lineltems

{ EPENDABLE SOFTWARE 172
y LABORATORY

KU v

Association

* Models possible relationships between instances of classes

— When objects of one class work with objects of another class for some prolonged
amount of time.

* givesLectureFor p *
Professor V4 Student
+lecturer
helenlLewis:Student
I neienLewis.otuaent
annaMiller:Professor
\
aulSchubert:Student
| e

frankStone:Professor

mikeFox:Student

LABORATORY

“ 5\‘?,_\‘
‘ Lg ;:I)EPENDABLE SOFTWARE 1 73
) 4

‘ KONKUK

UNIVERSITY

Binary Association

 (Connects instances of two classes with one another

Navigability Association name Reading direction

/ Multiplicity

Student

vk givesLectureFor p
Professor

X

+lecturer

Non-navigability

Visibility = Role

EPENDABLE SOFTWARE 174
LABORATORY

Binary Association - Navigability

Navigability

— An object knows its partner objects and can therefore access their visible

attributes and operations.
— Indicated by open arrow head or cross

Example:

— “A can access the visible attributes and operations of B’
— “B cannot access any attributes and operations of A"

Navigability undefined
— Bidirectional navigability is assumed.

KU v

A

A

175

Navigability - UML Standard vs. Best Practice

UML Standard Best Practice
A B |
— A B
A l<— B
A S| B |
— A > B
A b«———> B

]
'DEPENDABLE SOFTWARE 1 76
RATORY

Binary Association as Attribute

= Java-like notation:

DABLE SOFTWARE
LABORAT!

‘ORY

Professor Professor
+lecturer | * _
X* Student
Student + lecturer: Professor[*]

class Professor {..}

class Student {
public Professor[] lecturer;

KU KONKUK
UNIVERSITY

177

A

i

Ways to Show UML Attributes

« Attributes can be shown in three ways:

1.

2. association line
* a navigability arrow

3.

g,

i | DEPENDABLE SOFTWARE
| y LABORATORY

)i
U &

attribute text

 visibility name : type multiplicity = default {property-string}

« multiplicity
e arole name

both together

using the attribute
text notation to
indicate Register has
areference to one
Sale instance

OBSERVE: this style
visually emphasizes
the connection
between these classes

thorough and L
unambiguous, but some
people dislike the

possible redundancy

Register

) currentSale © Sale

Register

KU KONKUK
UNIVERSITY

C currentSal

using the association notation to indicate
Register has a reference to one Sale instance

Register

currentSale ; Sale

currentSal

Sale

| Sale
1
e

I~

| Sale
\l.
o
e

P

178

Attribute Text vs. Association Lines for Attributes

 Use the attribute text notation for data type objects, while the association
line notation for others.
— Both are semantically equal.

— But, showing an association line to another class box in the diagram gives visual
emphasis.

. L Register Sale
applying the guideline ! ’
to show attributes as id: Int N time: DateTime
attribute text versus as

currentSale

association lines

Register has THREE attributes: Store

1. id
2. currentSale ! address: Address
3. location bsstian phone: PhoneMNumber

public class Register

{
private int id;
private Sale currentSale;
private Store location;
// ..

}

{ IepenDABLE SOFTWARE 179

LABORATORY

n-ary Association

More than two partner objects are involved in the relationship.
— No navigation directions

Student

Exam

*
grades

0..1 | +examiner

Lecturer

KU v

180

KU v

Association Class

« Association class
— Assign attributes to the relationship between classes rather than to a class itself.

— Treat an association itself as a class, and model it with attributes, operations,
and other features.
 lllustrated with a dashed line from the association to the association class.
* Necessary when modeling n:m Associations

— Example : If a Company employs many Persons, modeled with an Employs
association, you can model the association itself as the Employment class, with
attributes such as salary and startDate.

Company * Emlploys . Person
I
I
I
I
| l

a person may have Employment

employment with several

companies salary

startDate

- 4”
i f;I)EPENDABLE SOFTWARE 1 8 1
LYy LABORATORY

b\

KU KONKUK
UNIVERSITY

Singleton Classes

« Singleton class has only one instance of the class.
— "singleton" instance

— In a UML diagram, it is marked with a '1' in the upper right corner of the name
compartment.

— The Singleton design pattern

1o L
ServicesFactory UML notation: this *1'
'Y _ . can optionally be used

UML notation: in a o | instance ; ServicesFactory | to indicate that anly one
class box, an instance will be created
underlined attribute or accountingAdapter : |AccountingAdapter (a singleton)
method indicates a inventoryAdapter : linventoryAdapter
static (class level) taxCalculatoradapter ; ITaxCalculatorAdapter
member, rather than 3
an instance member o | getlnstance(} : ServicesFactory

getdccountingAdapter() ; 1AccountingAdapter

gelinventoryAdapter() : linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter

g,

!‘I -V.%]EPENDABLE SOFTWARE 182
!‘.I. y LABORATORY

EUS S

A

KU KONKUK
UNIVERSITY

Active Class

* An active object runs and controls on its own thread of execution.
— The class of an active object is an active class.

— In the UML, it may be shown with double vertical lines on the left and right sides
of the class box.

active class ﬁ

- Clock
«interface»

Runnable <ﬂ

run() run()

WE %

() DerenpasLE SOFTWARE 183
B LABORATO RY
AR E g

KU

Interfaces

« The UML provides several ways to show interface implementation.
— Formally called interface realization
— 3 Notations:
» Socket + lollipop notation
* Dependency line notation
» Interface implementation
socket line notation L
Window T'ﬂ{: 7 Window1 uses the Timer ' dependency line notation A
interface
Windaw?2 has a dependency on the
it has a required interface Timer interface when it collaborates
| with & Clock2 object
sinterfacex Clock?2 o
Timer g]
getTime() Timer A] Window2
getTime()
. Clockt
implements and
provides the Clock3
Timer interface
Ter -2 Window3
getTimey) o "
getTime() _ : . - socket line notation
lellipop notation indicates Clock3 implements
and provides the Timrer interface to clients Window3 has a dependency on the
Timerinterface when it collaborates
ﬂgmmmm N Timer is a provided interface with a Clock3 object 184

KONKUK
UNIVERSITY

Aggregation

« Special form of association
— Used to express that a class is part of another class.

» Properties of the aggregation association:
— Transitive: if B is part of A and C is part of B, C is also part of A

— Asymmetric: it is not possible for A to be part of B and B to be part of A
simultaneously.

« Two types:
— Shared aggregation
— Composition

KU KONKUK
UNIVERSITY

185

Shared Aggregation

Expresses a weak belonging of the parts to a whole

— Parts also exist independently of the whole.

Multiplicity at the aggregating end may be >1.
— One element can be part of multiple other elements simultaneously.
— Spans a directed acyclic graph.
— Syntax: Hollow diamond at the aggregating end

Example:
— Student is part of LabClass.
— Course is part of StudyProgram.

LabClass

StudyProgram

Student

Course

186

Composition

« Existence dependency between the composite object and its parts

— One part can only be contained in at most one composite object at one specific
point in time.

— If the composite object is deleted, its parts are also deleted.

— Multiplicity at the aggregating end is max. 1
— The composite objects form a tree.

— Syntax: Solid diamond at the aggregating end

 Example:
— Beamer is part of LectureHall which is part of Building.

1 * 0..1 1
Building @ —— LectureHall @—— Beamer

Hand - S Finger

™ %
I‘s f;:DEPENDABLE SOFTWARE 1 87
Ay LA

—
Ny

Shared Aggregation and Composition

Which model applies?

0..1 4
Car N Tire
1 4
Car @ Tire
* 4
Car <> Tire
* 1.2
Car 1 Type of Tire

KU v

188

Rl

Shared Aggregation and Composition

« Which model applies?

0..1 4
Car s o Tire
1 4
Car - Tire
* 4
Car <> Tire
* 1.2
Car <> Type of Tire

A Tire can exist without a Car. A
Tire belongs to one Car at most.

A Tire cannot exist without a Ccar.

A Tire can belong to multiple Cars

A Car has one or two types of
Tires. Several Cars may have
the same Type of Tires.

~=-S9A---- ========0ON-=-=----- —--SA----

Generalization

« Everything of a general class are passed
on to its subclasses.
— Every instance of a subclass is

simultaneously an indirect instance of the
superclass.

— Subclass inherits all characteristics (attributes
and operations), associations, and aggregations

of the superclass except private ones.

— Subclass may have further characteristics,
associations, and aggregations.

 (Generalizations are transitive.

(! DEPENDABLE SOFTWARE
R LABORATORY

Person

/

|

Employee

Student

[

Professor Secretary

190

Generalization - Abstract Class

» Used to highlight common characteristics of their subclasses

{abstract}
A

 Used to ensure that there are no direct instances of the superclass

— Only its non-abstract subclasses can be instantiated.

* Notation: keyword {abstract} or class name in italic font.

{abstract}
Person

L

Woman

{abstract}
Person

Person

191

Generalization - Multiple Inheritance

UML allows multiple inheritance.
— Aclass may have multiple superclasses.
— Not allowed for JAVA programming language.

Example:

Student

Employee

N7

Tutor

KU v

192

With and Without Generalization

Study ~

Program

1. %

enrolls

*

Student

name
address
dob
ssNo
matNo

Course

Faculty

*

teaches

1.%

1

isAssigned

*

Research
Associate

Administrative
Employee

name
address
dob
ssNo
acctNo

name
address
dob
ssNo
acctNo

| L
J(&)EPENDABLE SOFTWARE
gl- ? LABORATORY

<A

KU KONKUK
UNIVERSITY

{abstract}
Person
Student
L |name
matNe address
dob
* ssNo
enrolls
1.%
VS. Employee * 1
StudyProgram Faculty
acctNo isAssigned
1.%Q
*
Course
*
teaches
1.%

ResearchAssociate

AdministrativeEmployee

193

KU v

Creating a Class Diagram

* Not possible to completely extract classes, attributes and associations from
a natural language text automatically.

* Guidelines
— Nouns often indicate classes
— Adjectives indicate attribute values
— Verbs indicate operations

« Example: “The library management system stores users with their unique ID,
name and address as well as books with their title, author and ISBN number. Ann

Foster wants fo use the library.”

Book User
+ title: String + ID: int
+ author: String + name: String
+ ISBN: int + address: String

™ %
I‘s f;:DEPENDABLE SOFTWARE 1 94
Ay LA

Rl

Example - University Information System

« A university consists of multiple faculties which are composed of
various institutes. Each faculty and each institute has a name. An
address is known for each institute.

« Each faculty is led by a dean, who is an employee of the university.

« The total number of employees is known. Employees have a social
security number, a name, and an email address. There is a distinction
between research and administrative personnel.

« Research associates are assigned to at least one institute. The field of
study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates hold courses. Then they are called lecturers.

« Courses have a unique number (ID), a name, and a weekly duration in
hours.

.
(} DepenDABLE SOFTWARE 195
LABORATO RY

| e ——

‘ KU KONKUK
UNTVERSITY

Example - Step 1: Identifying Classes

« Auniversity consists of multiple faculties We model the system “University*
which are composed of various institutes.

Each faculty and each institute has a
name. An address is known for each University
institute.

« Each faculty is led by a dean, who is an
employee of the university.

« The total number of employees is known. Institute
Employees have a social security number,
a name, and an email address. There is
a distinction between research and
administrative personnel.

« Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be Adiminsnae Project
involved in projects for a certain number S
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses. Course
Then they are called lecturers.

« Courses have a unique number (ID), a
name, and a weekly duration in hours.

Faculty

Dean

Employee Research

Associate

Lecturer

Dean has no further attributes than
any other employee

]}EPENDAHLE SOFTWARE 1 96
LABORATORY

B

A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a
name. An address is known for each
institute.

Each faculty is led by a dean, who is an
employee of the university.

The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is

a distinction between research and
administrative personnel.

Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be
involved in projects for a certain number
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses.
Then they are called lecturers.

Courses have a unique number (ID), a
name, and a weekly duration in hours.

EPENDABLE SOFTWARE
LABORATORY

Institute

+ name: String
+ address: String

Employee

Faculty

+ name: String

+ ssNo: int
+ name: String
+ email: String

Research
Associate

+ fieldOfStudy: String

+ counter: int

Administrative
Employee

Course

+ name: String
+id: int
+ hours: float

Project

+ name: String
+ start: Date
+ end: Date

Lecturer

Example - Step 2: Identifying the Attributes

197

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (1/¢

» Three kinds of relationships:

{abstract}
— Association Employee
. . + ssNo: int
— Generalization + name: String
. + email: String
— Aggregatlon + counter: int
. H . : Administrati R h
* Indication of a generalization Employes Al
— “There is a distinction between research + fieldOfStudy: String
and administrative personnel.”
— “Some research associates hold courses.
Then they are called lecturers.”
Lecturer

1
Q DEPENDABLE SOFTWARE '] 98
i y LABORATORY

AL T 2

Example - Step 3: Identifying Relationships (2/¢

« “A university consists of multiple faculties which are composed of various
institutes.”

Faculty

+ name: String

1

1.5

Institute

+ name: String
+ address: String

EPENDABLE SOFTWARE 1 99
LABORATORY

{abstract}
Employee

+ ssNo: int

+ name: String
+ email: String
+ counter: int

1

“Each faculty is led by a dean, who is an employee of the university”

leads p

EEEEEEEEEEEE WARE

+dean

Faculty

+ name: String

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (3/c

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (4/¢

 “Research associates are assigned to at least one institute.”

AL Institute
Associate 1 * 1,_*<>
+ fieldOfStudy: String + name: String
+ address: String

Y

: EPENDABLE SOFTWARE 20 1
i
|

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (5/C

« “Furthermore, research associates can be involved in projects for a certain
number of hours.”

Resea_r o Institute
Associate 1.% 1 %
+ fieldOfStudy: String + name: String
+ address: String

Participation

1+ hours: int
Lecturer

Project

+ name: String
+ start: Date
+ end: Date

I EPENDABLE SOFTWARE 202
LABORATORY

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (6/C

« “Some research associates hold courses. Then they are called lecturers.”

+ name: String
+ id: int
+ hours: float

% | b
A DEPENDABLE SOFTWARE
!‘.I. y LABORATORY

AL T 2

Administrative Research
Employee Associate
+ fieldOfStudy: String
Lecturer
1.
Course teaches
1.% v

203

Example - A Complete Class Diagram

{abstract}
Employee
+ ssNo: int 1 leads p 0.1
+dean

+ name: String
+ email: String
+ counter: int

[N

Administrative Research
Employee Associate
+ fieldOfStudy: String
Lecturer
1 '_*
Course teaches
1.% v

+ name: String
+ id: int
+ hours: float

3
ia]EPENDABLE SOFTWARE

1%

..*

Faculty

+ name: String

1

1.%

Institute

+ name: String
+ address: String

Participation

7+ hours: int

Project

+ name: String
+ start: Date
+ end: Date

KU v

204

What’s the Relationship between Interactio ===
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.

— Two complementary dynamic and static views are drawn concurrently and
iteratively.

— Example:

» If we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

\

e e LY

I
o MmakePayment(cashTendered) !

——
-

- makePayment(cashTendered) | i

-

!
-)
, I
i i ¥
i messages in interaction 7 L !
5 |

\

. | diagrams indicate operation : ¥
\, | in the class diagrams i /| classes
b o identified in the
: s interaction
5 - g diagrams are
; Register _ Sale ~ declared in the
) I class diagrams
LY | 1
\\, e | >: =
yl currentSale |
1 makePaymenl(.,.) makePaymenl(..,)

LABORATORY

™ %
I‘s ?;‘:]DEPENDABLE SOFTWARE 205

KU v

I}EPENDAHLE SOFTWARE 206
LABORATORY

17

Chapter 17.
GRASP: Designing Objects with

Responsibilities

KU v

OOD : Object-Oriented Design

- 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, it is not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

* Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

B q‘?,_\‘
g ;:I)EPEI\II_ZABLE SOFTWARE 208
N

Object Design with Patterns

« During the UML drawing activity,
we can apply various OO design
principles, such as

— GRASP (General Responsibility Assignment
Software Patterns)

— Gang-of-Four (GoF) design
patterns.

« Design outputs:
— UML interaction diagrams
— Class diagram
— Package diagrams

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Sample UP Artifact Relationships

Dosreain Model
Business Sale i g ui::r;-n
Modeling ale
fuantity
Use-Case Modal
Process Sale
. s':." 5o 1, Cusbomar Supplemantary
Cauem COS8 | amives Speciiication
names | -
® 3 Cashier
| | Enders itam] PO
“ idantifiar, A i
Require: e functianal requirements
Use Case Diagiam Lrse Canne Text resquinamants
il | that must be domain rules
ideas for system realized by
The post. evaits ik objects
conditions
Inspération for Syslam
riamas of T Glosaary
Opéralioen;... - b
SO o7
 aneriiemi,.} make H
softwng .El periiam| r___. syslem NewSale() o
dCemain e . r . N
opavations - i
objacts Post-conditions: 3 L entacitemn 8
=L ik, quartity)_as Iham Ut:la-“s
atarting events 1o Oparsfion Conlracts Syslem Sequence Disgrams walldation
disign for, and g
detaed posl- »
condition o f'-_________‘_ _'_..\
satish Dasign Model
v 1 Regsier 9 ProductCataleg Sale 1
i T i
‘I A7 enertem '
Dﬂ'ﬂﬂl o, [BEMID, quantity) | | : |
. d = getProduct DescriptionfitarniD) - |
I addLinaltem d, quarity | .4 |
=
I BgEY ProductCatalog |
I i " getProductDeseription...| |
antaritemd._.. i)

GRASP: A Methodical Approach to Basic OO
Design

« GRASP : A Learning Aid for OO Design with Responsibilities
— General Responsibility Assignment Software Patterns

 The GRASP principles or patterns are a learning aid to help you
— Understand essential object design,
— Apply design reasoning in a methodical, rational, and explainable way,
— based on patterns of assigning responsibilities.

» We can apply the GRASP principles while drawing UML interaction
diagrams.
— Aid for naming, presenting, and remembering basic/classic design ideas

EEEEEEEEEEEEE FTWARE

GRASP

» 9 basic OO design principles or basic building blocks in design.

EPENDABLE SOFTWARE
LABORATORY

Creator

Controller

Pure Fabrication
Information Expert

High Cohesion
Indirection

Low Coupling
Polymorphism
Protected Variations

211

EPENDABLE SOFTWARE
LABORATORY

Pattern/

sia Description
Principle L

Information A general principle of object design and responsibility assignment?

Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

Controller What first object beyond the UI layer receives and coordinates (“controls”) a system opera-

tion?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling

How to reduce the impact of change?

(evaluative)
Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to
evaluate alternatives.
High How to keep objects focused, understandable, and manageable, and as a side-effect, support
Cohesion Low Coupling?
(evaluative)
Assign responsibilities so that cohesion remains high. Use this to evaluate alternatives.
Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior—using polymorphic operations—to the types for which the behavior varies.
Pure Who is responsible when you are desperate, and do not want to violate high cohesion and
Fabrication low coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience “behavior”
class that does not represent a problem domain concept—something made up, in order to
support high cohesion, low coupling, and reuse.
Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.
Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or
Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
“interface” around them.

K

KONKUK
UNIVERSITY

212

KU v

Information Expert

Name Information Expert
Problem What is a basic principle by which to assign responsibilities to objects?
Solution Assign a responsibility to the class that has the information needed to fulfill it.

%

by, R

\\ﬁ i‘\ || :Boacd | |E}Q¢l.('?\ _i
L'_"'-,:—‘—-—-..l | '!l'.

. HTj
- -C;}d gﬁﬁ_l‘(‘ ntt_:—..l. |ebp\' S\:;t re ‘ Si 'l.f"L.

Applying Information Expert

A software Board will aggregate all the Square objects. Therefore, Board has
the information necessary to fulfill this responsibility.

T %
I

i f;I)EPENDABLE SOFTWARE
Yy LABORATORY
A

213

Rl

Creator

Name Creator

Problem Who creates an A?

Assign class B the responsibility to create an instance of class A, if one of these is
true (the more the better):

« B "contains" or compositely aggregates A.

B records A.

B closely uses A.

B has the initializing data for A.

Solution

(} DepenDABLE SOFTWARE 214
\ LABORATORY

Example: Creator

L) P’Ll::éd-ﬂ1+l1 PL“.!J—M
d

Boqrd

™.
| L1t
I-.-—-—

£ wceVlue

|
Containg

: 4o
Ptﬂ_‘_’gf __ﬁ\-_lﬁ__.,l Ht(l L-on " Sﬂ&.}hﬂ.
| name heme hoyme

| e e

Monopoly iteration-1 domain model

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Cnrﬁnl."
reate
= 'l '-Gunr-kl-q b'})\
‘;ﬂrtdt S .

-
]
|
['

Applying the Creator pattern in a dynamic model

In a DCD of the Design Model, Board has a composite
aggregation association with Squares.
We are applying Creator in a static model.

215

KU v

Controller

Name Controller

What first object beyond the Ul layer receives and coordinates ("controls") a system

FetelE operation?

Assign the responsibility to an object representing one of these choices:
* Represents the overall "system," a "root object," a device that the software is
Solution running within, or a major subsystem (all variations of a facade controller).
* Represents a use case scenario within which the system operation occurs.
(a use case or session controller)

Meng {
et
1 N\.bm
T
]" (™
I ~as

T g S i
— D".‘I'ﬁﬂ.'m Lmu -

Applying the Controller pattern using MonopolyGame.
| Connecting the Ul layer to the domain layer of software objects.

216

23 Design Patterns of

Abstract Factory

E Adapter

Bridge

=] euider

Chain of Responsi
Command
El Composite
[5] pecorator

ibility

[E] Facase [E] Poxy

[[E] Foctory Methoa Observer

El Flyw=ight EI Singleton
Interpreter State

Herator Strategy
Medistor Tempiate Method
Memento Visitor

[E] protoree

susesser (Chain of Responsibility
Type: Behavioral

Whatit is

Avoid coupling the sander of 3 request to
its receiver by giving more than one object
2 chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it

Command

Type: Behavioral

Whatitis

Encapsulate & request s an object.
thereby letiing you parameterize dlients
with different requests, queus or log
requests, and support undoabls operatians.

Interpreter
Type: Behavioral

What it is:

Giuan a language, define & reprasentation
for its grammar along with an interpreter
that usas the reprasentation to interpret
sentences in the language.

‘-*mrpmﬂ): Context i ‘-Hnmrptel() ~ Context

lterator

interiaces e e Type: Behavioral
| fearegus ‘ | Serator ‘ Whatit is:
| ey ‘ [0 | Provide 3 way to aooess the tements of
an <squentially without

T

exposing s underlying representation.

T

“\!Ealznzzmn;), Context |

|mmﬁ Context ‘

informs

‘ Mediator

Mediator

cint=rfaces
Colleague

updates

Type: Behaviorsl

What it is:

Defing an chject that encapsuiates how
set of objects interact. Promotes loose
caupling by keeping objects from refeming
to 2ach other explicitly and it lets you vary

= 5

Memento
Memento
== o]
Type: Bshavioral
‘What it is: = ‘
Without violating encapsulation. capture H
and externalize an object's interal state i
i
:a:galégf object can be restored to this e I
- — ! ~
[state o [-adaptee.
+aday jon{;
e) ey [Eenma]
+createMemento)
sinterfaces
Observer Subjest notifies e
anachiin o Observer) ver
Type: Behavioral +detachin o - Observer) [+update()
What it is- k. ik
Define a one-to-many dependency between
objects 5o that when one object changes
state, all its dependents are notified and
updated automatically.
observes
]
{
+updsta(} |

State
Type: Behavioral

Whatitis:
Allow an chjectio alterits behavicr when
its intemal state changes. The object will
appear to change its dlass.

sinterfaces

children

4

Adapter
Type: Structural

Whatitis:
Convert the interface of a dlass into
another interface dients expect Lets
classes work tagether that couldn't
ctherwiss because of incompatible
interfaces.

Bridge

Type: Structural

Whatitis:

Decouple an abstraction from its

implementation 50 that the two can vary
independently.

Composite
Type: Structural

Whatitis:
Compose chjects into tres structures to
represent part-whole hisrarchies Lets
clients treat individusl objeets and

Composite
| ConcretaStated ConcreteState2 | | Leaf e
+handle() [+handief) [Foperation)) +add(in o - Compasite]
| | | | e o)
+getChild(in i - int)

Strategy

Type: Behaviorsl

What it is
Define a family of algarithms,
encapsulate each ane, and make them
intsrchangesble, Lets the aigorithm vary
independendy from

lients that use it

Template Method

Type: Behaviors!

Wht it is:
Define the skeleton of an algorithm in an
operation, defeming some sieps to subdasses.
Lets subsiasses redefine certain steps

of an aigorithm without changing the
algarithm's siructure.

ainterfaces

Visitor Visitor

of objects uniformiy.

Decorator

Type: Structural

Type: Behaviorsl v :
+visitElementi(in b : ConcreteElementS)

What it

Whatiit is:

Attach additional responsibiliies to an
object dynamically. Provide a flexible
aftemative to sub-classing for extending
functionality.

Facade

Type: Structural

Whatit is:
Provide 3 unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem
easier to use.

Flyweight

Type: Structural

Use sharing to support large numbers of
fine grained bjects efficiently

Represent. tobe .
performad on the slements of an = Element Whatitis:
object structure. Lets you define af ‘-tauxprﬁn - Visitar] ‘ i
new aperation wi i : -
the classes of b : ConcreteEiem S
which it operates. 5 =

st Unsharsdc:

-allState

[+acoept(in v - Visitor)

Proxy

Type: Structural

‘What it is:

Provide a surrogate or placeholder for
another object to control acoess o it.

Abstract Factory

| RealSubject | Tepresents |

Proxy

[Freuests

|]

Type: Creational

What it is:

Provides an interface for creating
families of related or depandant
objects without spacifying their
concrete diass

Builder

Type: Creational

What it is:

Separate the construction of &

complex object from its represanting

50 that the same construction
rocess can oreate different

reprasentations.

Factory Method
Type: Craational

Whatif
Dafine an intarface for crasting sn
object, but let subclasses decide which
class to instantiste. Lets & class defer
instantiation to subclasses.

Prototype
Type: Creational

What it is:

Specify the kinds of objects 1o create
using a prototypical instance, and
create naw chjscts by copying this
prowiype

Singleton

Type: Creational

What it is-

Ensure a class ony has cne instance and
provide a global point of acoess to it

ConcreteBuilder
builaPar)
[getResut)
interfaces Em—
Product
[+anCperation()
Pl
ConcreteProduct ¢ — —— — —

[Siatic uniqueinstance
-singletonData.

[+static instance()
|#SingletonOperation()

217

KU v

I}EPENDAHLE SOFTWARE 2 1 8
LABORATORY

18

Chapter 19.
Designing for Visibility

KU v

Visibility Between Objects

* In message passing between objects,

— For a sender object to send a message to a receiver object, the receiver must be
visible to the sender.

« The sender must have some kind of reference or pointer to the receiver object.

— Example,

* The getProductDesc message sent
from a Register to a ProductCatalog claes Rogisler A
implies that the ProductCatalog instance {
should be visible to the Registerinstance.

private ProductCatalog catalog;

}...

srtaritan : Register : ProductCatalog

(itemID, quantity) *I
~ desc = getProductDesc(itemID)

|
public void enterltem(itemID, gty) L

{

E o, e

desc = catalog.getProductDesc(itemiD)

‘ Lg ;:I)EPENDABLE SOFTWARE 220
| b 4

LABORATORY

Visibility

mmn” KONKUK
UNIVERSITY

\ 4

Visibility is the ability of an object to “see” or “have a reference to”
another object.

— When an object A sends a message to an object B, B must be visible to A.
— The issue of scope: “Is one resource (such as an instance) Within the scope of another?”

— 4 common ways that visibility can be achieved from object A to object B:
1. Attribute visibility : B is an attribute of A.
2. Parameter visibility : B is a parameter of a method of A.
3. Local visibility : B is a (non-parameter) local object in a method of A.
4. Global visibility : B is in some way globally visible.

KU v

Attribute Visibility

« Attribute visibility from A to B exists, when B is an attribute of A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— Very common form of visibility in object-oriented systems

— For example,

* For the class Register, a Register instance may have attribute visibility to a
ProductCatalog, since it is an attribute of the Register.

A

public void enterltem(itemID, qty)
class Register {

{

private ProductCatalog catalogi, .. sdsseessessesvojoretersss
. }
kS
enterltem ‘ ProductCatalo

itemID, quantit

spec = getSpecification(itemID)

]
|

| },I:DEPENDABLE SOFTWARE 222
LABORATORY

KU KONKUK
UNIVERSITY

Parameter Visibility

- Parameter visibility from A to B exists, when B is passed as a parameter to
a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— The second most common form of visibility in object-oriented systems.

— For example,

« When the makeLinelterm message is sent to a Sale instance, a ProductDescription
instance is passed as a parameter. Within the scope of the makeLinelterm method, the
Sale has parameter visibility to a ProductDescription.

enteritam(id, gly] — 2; makeLinellem(desc, gty) —=
:Register Sale

1: desc = gelFroductDesc(id)

| 2.1: create(desc, gty)

‘Praduct T
Catalog

makeLinaltemi{PraductDescription desc, int giy) k sl : SalesLinellem

[
s.ll = new SalesLineliem{dese, glyl;
} 4
EFIH L‘éfgxpmmmg SOFTWARE 223

!‘.I. y LABORATORY
SN

I(IJKONKUK
UNIVERSITY

Parameter to Attribute Visibility

* Itis common to transform parameter visibility into attribute visibility.

— For example,

 When the Sale creates a new SalesLineltem, it passes the ProductDescription in to its
initializing method (in C++ or Java, this would be its constructor). Within the initializing
method, the parameter is assigned to an attribute, thus establishing attribute visibility.

anterttem{id, gty) -

2- makaLinaltamidasc, gt
‘Regisier 4 aty) = ‘Sale
2: dasc = getProductDescid)
' 2.1: create(desc, gly)
[Product '
Catakog
public class SalesLinelItem
h gl : Saleslineltem {

it initializing method (e.g., a Java constructor) priysbe iRt SnaRieR] _—
SalesLineltem{ProductDescription desc, int gty) private ProductDescription description;
{

public SaleslLineItem (ProductDescription desc, int quantity)
{
il. this.description = desc; this.quantity = quantity;’

}

description = desc; V parameter to attribute visibllity

public Money getSubtotal()
{

return description.getPrice().times(quantity)
}

EPENDABLE SOFTWARE 224
LABORATORY

KU v

Local Visibility

« Local visibility from A to B exists, when B is declared as a local object
within a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— As with parameter visibility, it is common to transform local visibility into attribute
visibility.

« Two common ways for local visibility:
1. Create a new local instance and assign it to a local variable.
2. Assign the returning object from a method invocation to a local variable.

enterltem(id, gty) ‘
{

Il local visibility via assignment of returning object
ProductDescription desc = catalog.getProductDes(id);

}
- Register : ProductCatalog

enterltem

(itemID, quantity) |

desc = getProductDesc(itemiD)

imse ey

| },I:DEPENDABLE SOFTWARE 225
u J LABORATORY

KU

Global Visibility

Global visibility from A to B exists, when B is global to A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— The least common form of visibility in object-oriented systems

One way to achieve global visibility is

— Assign an instance to a global variable, which is possible in some languages,
such as C++, but not others, such as Java.

The preferred method to achieve global visibility is to use the Singleton
pattern.

KONKUK
UNIVERSITY

ABLE SOFTWARE 226

KU v

I}EPENDAHLE SOFTWARE 2 2 7
LABORATORY

19

Chapter 20.
Mapping Designs to Code

KU v

Mapping Designs to Code

The UML artifacts created during the design work (Interaction diagrams and DCDs)
will be used as input to the code generation process.

Implementation in an OO language requires writing source code for:
— class and interface definitions
— method definitions

A translation from UML designs to code is required.
— from class diagrams to class definitions,
— from interaction diagrams to method bodies.

229

KU v

Creating Class Definitions from DCDs

« DCDs are sufficient to create a basic class definition in an OO language.

— For example,

« From the DCD, a mapping to the attribute definitions(Java fields) and method signatures
for the Java definition (SalesLineltem) is straightforward.

public class SalesLinelte m k
{
private int quantity;

| private ProductDescription description ;
public saleslineltem(ProductDescription desc, int qty) { .- |
public Money getSubtotal (0 { ..)

}

ProductDescription
SalesLineltem t
description | description : Text
quantity ;: Integer I ’ - price : Money
[1 | itemiD : lteml D
getsubtotal () : Money

- 4”
i f;I)EPENDABLE SOFTWARE 2 3 O
LYy LABORATORY

b\

KU v

Creating Methods from Interaction Diagrams

» The sequence of the messages in an interaction diagram translates to a
series of statements in the method definitions.

— For example,
« The enterltem interaction diagram illustrates the Java definition of the enter/tern method.

(Method) The enterltem message is sent to a Register instance;

therefore, the enterltem method is defined in class Register. Message 2: The makeLinelfem message is sent to the Sale.

public void enterltem(ltemID itemID, int qty) currentSale.makeL.ineltem(desc, qty);

enteritem(id, gty) —» 2: makeLineltem(desc, gty) -
Register Sale

1: desc = getProductDesclid) Y 2.1: create(desc, qty)

Message 1: A getProductDescription message is sent to

the ProductCatalog to retrieve a ProductDescription. : T
Product

Catalog
ProductDescription desc = catalog.getProductDescription(itemID);

sk SalesLineltern

1.1: desc = getlid)
v 2.2:add (sl)
T

lineltems =

: Map<ProductD: iplicn: . :
i . L List<SalesLineltem:

*)
DEPENDABLE SOFTWARE 231
y LABORATORY

K

KONKUK

UNIVERSITY

getTotal()

The Register.enterltem Method
public class Register L
{
private ProductCatalog catalog:
private Sabe currentSale ;
public RegisteriProductCatabog pe) .. } ProductCetslog
public veid end3ale () -} catalog
public void enterltem(ltemiD id, int qty) . | 1 getProduciDesc {...)
public vaid makeNewSale () [.. } .
public void makePaymentiMoney cashTendered [|}
H
: Sale
Register | iComplete : Boclean
| time : DateTime
enterltem() Y. |= | curentSale i
endSale() | bdcomuComplats {
1 maa keLineltem(..}
enterltemiid: eml O, gty : Integer)
makeNewsSal e} ‘ makePayment...)

makePayment {cashTendered : Money)

| h
PraductDescription desc = catalog. PreductDescription (id);
currentSale . makeLineltem{desc, qty) :

}

-y

enteritem(id, gty] — = 2:makeLineltemidesc, qty] —=

‘Register | Sale

1:desc = getProductDescription (id)

'
i Product
| Catalog

EPENDABLE SOFTWARE
LABORATORY

232

KU v

Collection Classes in Code

* One-to-many relationships are common.

— For example, a Sale must maintain (attribute) visibility to a group of many
SalesLineltem instances.

Sale
public class Sale
E isComplete : Boolean "
2 time : DateTime SalesLineltem
lingliemis)
private List lingltems = new ArrayListl) ; becomeComplete () _§| quantity :integer
! : makeLineltemi) s abeotdll

makePayment(]
getTrotal()

A

A collection class is necessary 1o
maintain attribute visibility to all the
SalesLineltems |

* In OO programming languages, they are usually implemented with the
introduction of a collection object of collection classes.
— List (ArrayList — List interface) : a growing ordered list
— Map (HashMap — Map interface) : a key-based lookup
— Simple array

- 4”
i f;I)EPENDABLE SOFTWARE 2 3 3
LYy LABORATORY

b\

Example : Defining the Sale.makeLineltem Bt e
Method

« The makeLineltem method of class Sale can be written by inspecting the
enterltern communication diagram.

{ k
lineltems.add(new SalesLineltemidesc, gty));
]
enterltem(id, qty) —w 2: makeLineltem(dese, qty) —* :
Register | : _ Sale
2.2:add (s) ‘
2.1: create(desc, qty)
T

T

lineltems:

List<SalesLineltem>= sl: SalesLineltem

R Y
() DerenpasLE SOFTWARE 234
i y LABORATORY

AL T 2

I { U {’(N?VRHSH"'

Order of Implementation

» Classes need to be implemented from least-coupled to most-coupled.

— For example,
» Possible first classes to implement are either Payment or ProductDescription.

* Next are classes only dependent on the prior implementations; ProductCatalog or
SalesLineltem.

Store o
| address : Addres s [1 7
| name : Text | ¥ o ProductDescription

ProductCatalog
addS.ale) description ; Text
— —- price : Mone y
i 1% itemiD: ltemID
| getPreductDesc |...) !

1
N 1 o Sale o
il | isComplete : Boolea n sl L'. I °
| time : DateTime . ales Lineltem :

> berrimecamplat) 1 Zl quantity : Integer
makelineltemn {..) T
makePayment [..)

getTotall}

— |
7
x Payment °

1 = amount ; Money |

endSal e) [1
enterltem(...)

makeMawSale ()

makePaymen t..)

getSubtotal()

A possible order of class implementation and testing
::g}ﬁ:)EPENDABLE SOFTWARE 235

T

o
'IL

0 LABORATORY
EUS S

KU KONKUK
UNIVERSITY

Example: the NextGen POS Program Solution

» Translation from design artifacts to a foundation of code.
— This code defines a simple case; it is not meant to illustrate a robust, fully

developed Java program with synchronization, exception handling, and so on.

// all classes are probably in a package named something like:
// package com.foo.nextgen.domain;

public class Payment

{
private Money amount;
public Payment(Money cashTendered){ amount = cashTendered;
public Money getAmount() { return amount; }

}

Store

address - Address
name : Text

1
Y

addSale(...)

ProductCatalog

Houses

Y

“| getSpecification(

Register

Sale

»~ Describes|
—

endSale()
enterltem(...)
makeNewSale()
makePayment(...)

date : Date

isComplete : Boolean

time : Time

Logs-completed*

becomeComplete()

makeLineltem(...)
makePayment(...)
getTotal()

7 1

EPENDABLE SOFTWARE
LABORATORY

Paid-by

A dependency of Register knowing about
ProductSpecification

Recommended when there is parameter,
global or locally declared visibility

ProductSpecification

description : Text

> price : Money
*| itemID: ItemID

1 4

*

SalesLineltem

| quantity : Integer

gelSubtotal()

Payment

amount : Money

236

KONKUK

UNITVERSITY

public class Register
{
private ProductCatalog catalog;
private Sale currentSale;
. . St
public Register (ProductCatalog catalog) i Uses
1| address - Address 1 1
{ . name : Text Y ProductSpecification
this.catalog = catalog; addsale() ProductCatalog _
} - Contains description : Text
. > price : Money
1) Looks-in N 1 1.*| itemID’ ItemID
getSpecification(...)
public void endSale() Houses ——————— * —
{) -~ Describes
1 1 £ Sale - .
currentSale.becomeComplete () ; Register : m— | —
} : isComplete : Boolean SalesLineltem
; Capves’ ., tiri: Thme B Contains _ 3 | quantity - Integer
3) A B e"dsfle“ 4 1| becomeComplete() st Sibidial
public voud enterItem (ItemID id, int quantity) ﬁgxﬁg&&w : makeLineltem(...) gatSublotall)
makePayment(...)
{ makePayment(._.) : getTotal()
ProductDescription desc = catalog.getProductDescription (id); Logs:compietih : *T 1 _ Pru—
currentSale.makeLineItem (desc, quantity); : Paid-by o
} A dependency of Register knowing about 1 -
ProductSpecification
.) Recommended when there is parameter,
publlc void makeNewSale () global or locally declared visibility
{
currentSale = new Sale();
}
public void makePayment (Money cashTendered)
{
currentSale.makePayment (cashTendered) ;
}
}

237

EPENDABLE SOFTWARE
LABORATORY

Rl

Example: POS Domain Model Packages

« After Elaboration - lteration 3.

Domain
Core/Misc Payments Products Sales

Authorization
Transactions

1 y N
il SéDEPENDABLE SOFTWARE 2 3 8

Core/Misc Products
Store Sales:
Houses [.
| | . SalesLineltem 0.1
Register | Manager e
address 1 g | [=
name " Described-by
1
Employs Product
Description
‘ ProductCatalog]0 +| description
1 i
price
Payments itemID
1 YhAuthorizespaymentsol . 1
Paymant Gare::Slora - AuthonzationSenice - Records-sale-of =
I SanviceContract I | Describes
amaunt }] address
T merchantiDy nams
phaneburmber *
Paidby | ooy PN Core: Stocks |
1 /,/ \\\. Store 1 = Item n
i i 8
;] i .] ; Check Cradit
CastPayment | | Ctodt ponock | Msozedy | punorization Autharization
i {- Lt ol i ; Senice Sanvice
amountT endined | W W Ll ;
| | o4 1
Authorized-by ", T
Logs ¥ I
Establishes- Establishes- " 1
C » Core:
cradit-dor identity-for = Uﬂwr Captured-on - ﬁ.gi:j -
1 1 1 Aulhorization Transactions:: 3
| : . PaymentAutherizalionReply Initiatos = ik
Accounts | | CrediCard DiversLicense - 1] 3
3 ! 4 ax
Fici : Sale 1 !
Hm“. | expiryDate number Lineltam t ! SalesLineltem Gashier
| Aumber N - CheckPayments hava e - dals |
' T Identifas CheckPaymantReplies e isComphate 1.."| fquantity
! L porcenta® (1.* 1 [e !
Abused-by ¥ | BadagCustomer - CraditPaymants have il . B
1 & | CredilPaymentRaples il " Cora:
1] Store
EPENDABLE SOFTWARE 2 3 9

LABORATORY

Partial Layers of POS

u
Swing ~ Text
ng notthe Java B Tk
ProcessSale || Swing libraries, but | | | processSale oA I e
Frame our GUI classes | Consola SAoN:
based on Swing

-Dumai.n.
Sales Pricing

Register Sale PricingStrategy | sinterfaces

Factory I1SalePricingSirategy
ServiceAccass Payments
- 1 winterface:
SFT"“'E CraditPayment ICreditAuthorization
chony | ServiceAdapler
Imventory POSRulaEngine _ Taxes
ainterfaces sinterfaces
linventoryAdapter PO=EukEnghierscace ITaxCalculatorAdapter
Technical Services
Parsistence : A general L
— purposa third-
Logad Jass SOAaP
DEFacade s _ party rules
engina,

I}EPENDAHLE SOFTWARE 240
LABORATORY

Deployment View of POS

Deployment View
r

HSEFVErD
{ 0S=Red Hat Enterprise Linux 4 }
£

wtlatabasen
L PostgreSQL 10
aartifacts
Product Tables

| SQAL over TCP

I
atarminals

- POSTerminal

{ JVM = Sun Hotspot Client 20} |

aartifacts
MNextGanClient jar

7

H

Q@ﬁ
»I‘-E’;@ "d} :

4 ’

custom protocols
on top of TCP

S0AP over HTTP

.] i
wEBrVarn

GenericServer

EPENDABLE SOFTWARE
LABORATORY

inveniory k
and
accounting

wEaVars
neri ver

asysiems
CreditFayment
Authorizer

-~

WHETVErs
i

{ O5=Red Hal Enterprise Linux 4 }

sartifacts
GoodAsGoldTaxCalculator axe

KONKUK

UNIVERSITY

241

KU v

I}EPENDAHLE SOFTWARE 242
LABORATORY

