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Abstract—The PLC (Programmable Logic Controller) is a
digital computer which has been widely used for nuclear RPSs
(Reactor Protection Systems). There is increasing concern that
such RPSs are being threatened because of its complexity, main-
tenance cost, security problems, etc. Recently, nuclear industry is
developing FPGA-based RPSs to provide diversity or to change
the platform. Developing the new platform, however, is challenge
for software engineers in nuclear domain because the two
platform, PLC-based and FPGA-based, are too different to apply
their knowledge. This paper proposes an automatic translation
of FBD (Function Block Diagram: a programming language of
PLC software) into HDL (Hardware Description Language). We
implemented an automatic translation tool, ‘FBDtoVerilog 2.0,’
which helps software engineers design FPGA-based RPSs with
their experience and knowledge. Case study using a prototype
version of a real-world RPS in Korea shows ‘FBDtoVerilog 2.0’
translates FBD programs for PLC into HDL reasonably.

I. INTRODUCTION

The past decade has seen the rapid development of nu-
clear power plants. As a consequence, the nuclear industry
modernizes existing analog I&C (Instrumentation and Control)
systems to digital I&C, as well as implements new digital I&C
systems in new plants. As I&C systems have been digitalized,
it allows software programs and network as a part of the
systems. For example, a PLC (Programmable Logic Controller)
has been widely used to implement real-time controllers in
nuclear RPSs (Reactor Protection Systems). It includes soft-
ware written in PLC programming languages [1], such as FBD
(Function Block Diagram) and LD (Ladder Diagram), and
communicates with other devices through networks. Digital
systems offer higher reliability, better plant performance and
additional diagnostic capabilities [2]. Despite the advantages,
CCFs (Common Cause Failure) and security problems are
rising in the field of the digital I&C systems in nuclear power
plant. Furthermore, increasing complexity and maintenance
cost are being brought up recently.

Diversity, which includes two or more redundant systems
or components with different attributes, for the RPSs is impor-
tant to prevent the threats [3]. Implementing the diversity using
FPGA (Field Programmable Gate Array) with PLC is one of
solutions [4], [5]. FPGA provides a powerful computation with
lower hardware cost; however, it is a challenge for software
engineers in nuclear domain to develop an all new platform
based on FPGA from the scratch. Not only experience, knowl-
edge and practice based on PLC are useless, but also safety
certification is too costly.

This paper proposes an automatic translation of FBD, a
programming language of PLC software, into behaviorally
equivalent [6] Verilog [7], one of HDLs (Hardware Description
Languages). The translation provides a starting point of typical
FPGA developments while not giving up the PLC engineers’
knowledge. Furthermore, all V&V activities and safety analy-
ses applied PLC software are still valid in the new platform. We
have developed an automatic translation tool, ‘FBDtoVerilog
2.0,’ which conforms to de factor standard PLCopen [8].

This paper organized as follow: Section 2 briefly introduces
the integrated development environment of nuclear RPSs based
on both PLCs and FPGA and role of ‘FBDtoVerilog 2.0’ in
the environment. It also included introduction to the FBD and
Verilog programming languages. Section 3 explains rules of
the translation and ‘FBDtoVerilog 2.0’ in detail. A case study
of the translation using the proposed tool are in Section 5, and
Section 6 concludes the paper and gives remarks on future
research.

II. BACKGROUND

A. NPP’s safety-critical software Development Environment

Software in NPP (Nuclear Power Plant) such as a RPS is
safety-critical software where it is essential that the system’s
operation is always safe [9]. RPS makes decisions for emergent
reactor shutdown. Therefore, RPS software should be verified
strictly and throughout entire development life-cycle. However,
it is hard to apply these process and techniques, because the
techniques are difficult to understand, the tools often work only
in isolation, and the output is difficult to extract meaningful
information. In order to overcome these difficulties, we have
developed NPP’s software development environment, ‘NuDE
[10],’ based on a formal-methods-based process [11]. We
are now extending the environment from PLC-based RPS
development to FPGA-based RPS development. Fig. 1 shows
NuDE process for software of PLC and hardware design of
FPGA.

NuDE has 3 activities—development, safety analysis, and
verification and validation (V&V)—to develop RPS software.
NuSRS uses a formal specification language, NuSCR, to spec-
ify requirements of RPS software. NuFTA, which generates
fault tree of the requirement, helps analysts perform safety
analysis. NuSCRtoSMV translates NuSCR formal specification
into the SMV language to perform V&V using a model
checking tool, Cadence SMV. FBD, in which NuSCRtoFBD
translates NuSCR formal specification, is design language
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Fig. 1. NuDE (NPP’s safety-critical software Development Environment):
Software development, verification, and safety analysis for nuclear RPSs

for PLC software Safety analysis of the FBD design uses
FBD FTA generating fault trees. Former version of FBD-
toVerilog, FBDtoVerilog 1.0 [12] and FBDtoVerilog 1.1 [13]
translates FBD designs into Verilog to verify the design.
Cadence SMV and VIS 2.0 are used for model checking, and
HW-CBMC is used for equivalence checking with C program
generated by FBDtoC.

‘FBDtoVerilog 2.0’ translates FBD programs into Verilog
programs to develop FPGA. The most superior advantage of
the translation is that PLC engineers can design hardware
components (FPGA) with their experience and knowledge
about development, V&V, and safety analysis of PLC software.
As a result, developing FPGA-based RPS and certifying safety
grade become shorter and cost effective.

B. Function Block Diagram
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Fig. 2. An example of FBD program

The IEC 61131-3 standard includes five PLC programming
languages: Structured Text (ST), Function Block Diagram

(FBD), Ladder Diagram (LD), Instruction List (IL), and Se-
quential Function Chart (SFC). FBD’s graphical notations and
support for networks of software blocks “wired” together in a
manner similar to circuit diagrams has lead to its widespread
use. Each function block is depicted as a rectangle and
is connected to other input/output variables. Among the 14
standard function groups and 4 standard function block groups
defined in IEC 61131-3 Std., 6 examples are illustrated in Fig.
2. The behavior of a function block is intuitive as their names
imply: ADD, AND, SEL, etc.

C. Verilog

Verilog is one of the most common HDLs (Hardware De-
scription Languages) used by IC (Integrated Circuit) designers.
Designs modeled in Verilog are technology independent, easy
to develop and debug, and considered more readable than
schematics. For this reason, Verilog is being increasingly used
to specify software logic for process control systems. Verilog
has several variable types. A wire, similar to a physical
wire in a circuit, is used to connect modules in software
development. A wire does not store its value and must be
driven by a continuous assignment statement or by connecting
it to an output of a module. On the other hand, a reg, used
in a procedural assignment block beginning with always,
represents a data object which holds its value from the current
execution cycle to the next.

III. FBDTOVERILOG 2.0

A. Translation of FBDs into Verilog

1) Verilog Library: IEC 61131-3 Std. defines standard
functions and function blocks; and it specifies their behaviors.
FBDtoVerilog 2.0 uses a basic function block library which
includes Verilog modules developed by experts in KAERI
(Korea Atomic Energy Research Institute) in advance. The
library is one-to-one which means a function or a function
block of the Std. is translated into a module of Verilog. For
instance, the AND function is translated into a AND module;
and the TOF function block is translated into a TOF module.

AND_BOOL_2IN1

IN2

OUT

module AND_BOOL_2(reset,clk,A_i,B_i,R_o);

input   reset; input   clk; 
input   A_i; input   B_i; 
output   R_o; reg     R_o; 

always @(posedge reset or posedge clk)
   begin : process_1
   if (reset)
      R_o = 1'b0;   
   else if (clk)
      R_o = (A_i&B_i);   
   end

endmodule

(a) The AND module 

with 2 inputs in Verilog

VOTE_2of4_BOOL_4IN1
IN2 OUT

module VOTE_2of4_func (reset,clk,A_i,B_i,
   C_i,D_i,R_o);

input   reset; input   clk; input   A_i; 
input   B_i; input   C_i; input   D_i; 
output   R_o; 

wire    R_o; reg     [3:0] concat_abcd; 

always @(posedge reset or posedge clk)
   begin : process_1
   if (reset)
      concat_abcd = {0,0,0,0};   
   else if (clk)
      concat_abcd = {A_i, B_i, C_i, D_i};   
   end

assign R_o = ((concat_abcd==4'h0)|(concat_abcd==4'h1) | 
              (concat_abcd==4'h2)|(concat_abcd==4'h4) | 
              (concat_abcd==4'h8)) ? 1'b0 : 1'b1; 
endmodule

(b)

The 2 out of 4 voting module 

with 4 inputs in Verilog

IN3
IN4

Fig. 3. AND and VOTE modules in the ‘pre-translated’ Verilog library

Fig. 3 shows examples of the pre-translated Verilog
modules—AND and VOTE1—in the library. The name of func-
tions and function blocks includes a type and an input number

1IEC 61131-3 Std. does not include VOTE functions, however, nuclear
engineers put them to frequent use. NuDE also provide the functions as basic
functions for efficient designing.



which is a ‘[NAME]_[TYPE]_[NUM]’ form. For example,
the AND function with two boolean inputs, (a) in Fig. 3, has the
name as ‘AND_BOOL_2’; the VOTE function with 4 boolean
inputs, (b) in Fig. 3, has the name as ‘VOTE_2of4_BOOL_4.’
Names of the modules in Library are exactly same respectively.
The all modules have a reset, reset, and a clock, clk, inputs.
The reset initializes all output ports; and the clock synchronizes
all modules.

2) Translation of Programmable Organization Units:
POUs (Programmable Organization Units) are function, func-
tion block, and program. The standard functions and funcion
blocks are pre-defined POUs. Users are able to define the
POUs to implement specific behavior. It includes interface and
body—the interface has information about inputs, outputs, and
other variables; and the body implements POU’s functionality
using connections among variables, functions, and function
blocks. POUs is a hierarchy structure: a program can include
functions and function blocks; a function block can include
functions and function blocks; and a function can include
functions (functions and function blocks can be both standard
ones and user defined ones).

FBDtoVerilog 2.0 translates a user defined POU into a
module. Fig. 4 indicates a form of the translation results. The
translation starts from defining interface of a module (line
1). POUName is the name of a target POU; and INPUT and
OUTPUT are external input and output ports in the POU—
the plus symbol ‘+’ means that an element in brackets ‘[
]’ can be repetitive as much as POU’s. Line 2–10 show
definition of input ports, output ports, feedback variables,
constant variables, and connector/continuation pairs. The top
three are mandatory inputs for all POUs, and the others are
defined by interface of the POU.

1: module [POUName] (rst, clk, pulse[, INPUT]+[, OUTPUT]+);
2: input clk;
3: input rst;
4: input pulse;
5:
6: INPUTs:[input [BitSize] Name;]+

7: OUTPUTs:[output [BitSize] Name;]+

8: FEEDBACKs:[output [BitSize] Name; reg [BitSize] Name;]+

9: CONSTANTs:[parameter [BitSize] Name = Value;]+

10: Connectors/continuations(CON):[wire [BitSize] Name;]+

11:
12: POUs:[ModuleName ModuleName_[localId](rst, clk, pulse, 
13: [, INPUT|CON|ModuleWire1]+ [, ModuleWire2]+);]+

14: Wiring POUs:[wire [BitSize] ModuleWire2;]+

15:
16:
17: Wire to CON|OUTPUT:[assign [CON|OUTPUT] = ModuleWire3;]+

18:
19: always @posedge rst or posedge clk or posedge pulse)
20: begin
21: if(rst) begin
22: Output initializations:[OUTPUT <= initialValue;]+

23: end else if (clk) begin
24: end
25: if (pulse) begin
26: Feedback assignments:[FEEDBACK <= ModuleWire4;]+

27: end
28: end
29: endmodule

Fig. 4. The frame of translation results from FBD to Verilog

POUs defines its behavior with wiring POUs. After defin-

ing interface, it translates a POU’s behavior using module
calls. All POU in a POU are translated into module calls
(line 12–13). The call have connections with pre-elements,
such as inputs (INPUT), connectors (CON), or output wire of
other POUs (ModuleWire1). A POU has at least one output,
therefore a translated module also has ones which is defined
at line 13 and 14 (ModuleWire2). If the POU defined at
line 12–13 is connected to a continuation or an output, then
its output (ModuleWire3) is assigned to the continuation
or the output (line 17). always statement models repetition
continuously in a digital circuit (line 19–28). It plays two
roles—initializing storable variables (line 21–22) and modeling
cycles of FBD (line 25–27). Every storable variable has its own
initial value. When rst is a positive edge which changes the
signal from FALSE to TRUE, it initializes the variables with
their initial value. clk is criterion for operations of modules
in the library, so modules receive the signal (line 12–13) and
the modules use it.

Understanding pulse needs more background about
FPGA-based RPSs. FPGA-based RPSs consists of two parts—
one is the I/O part and the other is the logic part. The I/O
part has scan time which means that it reads input values
from external memory and writes output values to the memory
periodically. The logic part calculates its result using inputs
from the I/O part and sends the result to outputs in I/O part.
Because every modules in the library operate by the clk
signal, the calculation time is in proportion to a number of
function and function blocks from inputs to outputs. Therefore,
output variables should wait to be assigned until the calculation
finishes. pulse is a criterion of the calculation and models
the scan cycle in FBD. When pulse is a positive edge, then
all storable variable is assigned (line 25–27).

B. Implementation of FBDtoVerilog 2.0

FBDtoVerilog 2.0 is an eclipse plug-in to be integrated
into NuDE which is based on eclipse plug-in environment.
It translates FBD files which conform PLCopen TC6 XML
version 2.01 scheme and generates Verilog files which has
“*.v” file extension. We implemented FBDtoVerilog 2.0 to
operate independently; however, now it is on FBDEditor in
1 for convenience. FBDEditor takes charge of opening and
checking FBD files; and FBDtoVerilog 2.0 takes charge of the
translation only with one-click.

IV. CASE STUDY

We performed case study to demonstrate the translation
using two bistable trip logics in a RPS [14]—FIX RISING
TRIP and FIX FALLING TRIP DECISION. Fig. 5 shows one
of the logics partially, which FBDEditor loads. Each logic has
5 inputs, 8 outputs, and 33 functions and function blocks. The
detail design of the logics are omitted due to space matters.

The translated file from the FBD logic is about 300 lines
of Verilog code except the pre-translated library. There are
three steps mainly to implement FPGA—synthesis, compile,
and P&R (Place and Route). We used ‘Libero Soc v11.1 [15]’
for the implementation and use ‘ProASIC3 Start Kit’ as FPGA
hardware. Libero Soc v11.1 reports no errors and one warning.
The warning is about a unused input port which the logic
has before the translation. Fig. 6 indicates the report from



Fig. 5. A screen dump of a partial logic in BP

Libero Soc v11.1 after compile is finished. We confirmed the
behavior performing simulation with Modelsim ACTEL 10.1c
[16]. Simulation scenario is from the requirement in [14] and
simulation result are equivalent.

Fig. 6. Compile report of a translated Verilog design using Libero SoC v11.1

V. CONCLUSION AND FUTURE WORK

This paper introduces that FBDtoVerilog 2.0 translator
transforms FBD programs for PLC-based software into
behaviorally-equivalent Verilog designs for developing FPGA.
In order to confirm the suitability of the translation, we
performed a case study with two logics of a preliminary
prototype version of the RPS BP. We also performed
simulation with scenario from its requirement and confirmed
behavioral-equivalence.

Since a FBD program and a Verilog design are one-to-one
correspondence, it is possible to manually identify structural
equivalence between them. It, however, is hard to guarantee
behavioral equivalence manually because theirs are not a one
off but a continual ones. We are now performing verification
and validation activities in diverse directions such as co-
simulation between a FBD program and a Verilog design.
Furthermore, we are planning to apply to FBDtoVerilog 2.0
the ‘safety/dependability case’ approach [17].
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