
Formal Modeling and Verification of Operational Flight Program
in a Small-Scale Unmanned Helicopter

Dong-Ah Lee1; Sangkyung Sung2; Junbeom Yoo3; and Doo-Hyun Kim4

Abstract: Formal verification has played an important role in demonstrating correctness of safety-critical systems. Small-scale unmanned helicop-
ters have been increasingly developed for various purposes such as scientific exploration and commercial or defense applications. The HELISCOPE
project in Korea aims to develop a small-scale unmanned helicopter and its onboard embedded computing system for flight control and real-time
transmission of multimedia data. This paper shares the authors’ experience on the formal verification of the operational flight program (OFP)
developed in the project. Because the OFP provides real-time controls on various sensors and actuators, demonstration of its correctness through
formalverificationshasbeen strongly recommended.Thispaper focuseson real-timeprocess communicationsamongsensingprocesses, amonitoring
process, and a controller process. They all share a common data area. Two different formal models were developed for the OFP and verifiedwith the
SPIN and UPPAALmodel checkers. While the SPIN model checker is widely used for modeling and verifying communication protocols, the real-
time behavior of the OFP controller needs more advanced techniques that can handle real-time properties explicitly, i.e., timed automata and the
UPPAAL verification system. The verification of the OFP found several safety-critical faults; they were all reported to development teams and
fixed. DOI: 10.1061/(ASCE)AS.1943-5525.0000165. © 2012 American Society of Civil Engineers.

CE Database subject headings: Verification; Models; Communication; Aircraft.

Author keywords: Formal verification; Formal modeling; Process communication; Operational flight program; SPIN; UPPAAL.

Introduction

The HELISCOPE project (Kim et al. 2009a) aims to develop an
onboard embedded computing system and application services for
an unmanned helicopter. It will be used for responding to disasters
such as forest fires or volcanic eruption. The operational flight
program (OFP) is a control program that provides real-time controls
over sensors and actuators that are installed in a helicopter. The OFP
developed in the project includes six independent processes and one
shared data area. Four sensing processes read data from the sensors
and write it into a shared data area, while one monitoring process
controls their mutual exclusiveness. One control process also reads
data from the shared data area and makes control commands for
servomotors in real time and periodically. Correctness of the OFP
should be demonstrated sufficiently, since the six independently
executed processes show complex real-time behaviors.

This paper demonstrates the correctness of the OFP, concern-
ing real-time process communications, using formal verification tech-
niques (Peled 2001). A former work (Lee 2010a) dealt with the

communications between four sensing processes and one control
process, while the monitor process monitors the four sensing pro-
cesses. Their behavior and communications weremodeled in a formal
modeling language PROMELA (protocol meta language) and formal
verification was performed using the model checker SPIN (Holzmann
1997). However, the controller in the OFP has a strict timing bound
in executing periodically, and the SPIN could not handle the real
time behaviors precisely. UPPAAL (Bengtsson et al. 1995) is an
automatic verification system which uses timed automata (Alur and
Dill 1994) as an input front end. The real-time behavior of the OFP
was modeled efficiently with the timed automata and UPPAAL, and
verified against important properties such as
1. The semaphores on four reading processes should function

correctly;
2. All reading processes should access the shared data area

safely;
3. Simultaneous reading and writing to the shared data area

should be safe; and
4. The control process should be able to get required data within

its timing bound.
Properties 1 and 2 can be verified with the SPIN model checker,

while Properties 3 and 4 need the timed automata model and the
UPPAAL verification system. The verification on the OFP found
some important faults, and they all were reported to development
teams. The latest version of the OFP has no such fault regarding real
time process communications.

The paper is organized as follows. Background briefly explains the
small-scale unmanned helicopter developed in the HELISCOPE
project. It also explains formal verifications using the SPIN and
UPPAAL model checkers, which are pertinent to the discussion.
Formal Modeling and Verification Using SPIN describes the OFP
model specified in the PROMELA programming language and the
verification results using the SPIN model checker. Limitations met
while using the SPIN are also described. To overcome the limitations,
timed automata and the UPPAAL verification system as described in

1Ph.D. Student, College of Information and Communications, Konkuk
Univ., Seoul 143-701, Korea. E-mail: ldalove@konkuk.ac.kr

2Associate Professor, Dept. of Aerospace Information Engineering,
Konkuk Univ., Seoul 143-701, Korea. E-mail: sksung@konkuk.ac.kr

3Assistant Professor, College of Information and Communications,
KonkukUniv., 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea (corres-
ponding author). E-mail: jbyoo@konkuk.ac.kr

4Associate Professor, College of Information and Communications,
Konkuk Univ., Seoul 143-701, Korea. E-mail: doohyun@konkuk.ac.kr

Note. This manuscript was submitted on January 24, 2011; approved on
September 16, 2011; published online on September 19, 2011. Discussion
period open until March 1, 2013; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Aerospace Engi-
neering, Vol. 25, No. 4, October 1, 2012. ©ASCE, ISSN 0893-1321/2012/
4-530–540/$25.00.

530 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000165
mailto:ldalove@konkuk.ac.kr
mailto:sksung@konkuk.ac.kr
mailto:jbyoo@konkuk.ac.kr
mailto:doohyun@konkuk.ac.kr

Real-Time Verification using UPPAAL were used. Related Work
introduces related work on formal verification in the aerospace in-
dustry. The paper is concluded in Conclusion and Future Work.

Background

Small-Scale Unmanned Helicopters

A helicopter makes a dynamic flight through lift force and thrust, both
generated by fast rotating rotor blades and their angular deflections
(Kim et al. 2009a). The deflection angles of the main and tail rotor
blades play an important role for highmaneuverability. Themain blade
pitch is typically controlled by a swash plate connected to thehelicopter
flight control servos. The tail rotor is connected through a combination
of a drive shaft and gearbox along the tail boom. Collective pitch,
longitudinal cyclic, lateral cyclic, and the tail rotor collective can
provide an independent control plan for altitude, forward/backward,
left/right, and directional motion, respectively. The most prominent
advantage of a helicopter system is that it can provide advanced
maneuvering capabilities such as hovering or nose-in-circle flight,
which is impossible for fixed wing aircrafts. A major drawback,
however, comes from difficult control problems in maintaining a sta-
ble attitude, caused by its complicated nonlinear aerodynamic mech-
anism.Therefore, it needs a series of complicated control logics such as
SAS (stability augmentation system) control, velocity hold, position
hold, direction hold, altitude hold, and its combined algorithm. Control
logics and sensor data processing are managed with an onboard
computing system as well as communication and control from ground
control system (GCS), despite its constraints on weight and volume.
In this respect, a very efficient and powerful onboard computing
system design and its verification are highly required. Fig. 1 shows
a test flight of the helicopter developed in the HELISCOPE project.

A small-scale unmanned helicopter in the HELISCOPE project,
which is pertinent to the discussion, receives commands from GCS
(ground control system) in real time. OFP (operational flight program)
running on FCC (flight control computer) installed in the helicopter
makes control signals for SWM (helicopter servoactuator switching
module). It also reads navigation information from GPS/INS (global
positioning system/inertial navigation system) and AHRS (attitude
and heading reference system). The OFP periodically sends the
vehicle’s information of current location and attitude to the GCS for

monitoring purposes. For flight control purposes, the autopilot control
logics within the OFP controller processes navigation data and sends
control outputs to the SWM for servocontrol. Fig. 2 shows an
overview of communications between all processes in the OFP, il-
lustrated from the viewpoint of formal verification.

The OFP consists of six independent processes and one shared
data area. Four sensing processes read data from sensors and write
the data into the shared data area, while one process controls their
serialization (mutual exclusion). In addition to those aforemen-
tioned, the OFP has one control process, reading data from the
shared data area, calculating and sending control data to actuators.
Details of the four sensing processes are as follows: Reader 00
reads packets containing AHRS information, while Reader 01 reads
navigation information and GPS data from a GPS installed in the
helicopter. Reader 02 collects information fromGCS, andReader 03
collects real-time operational information of the helicopter. These
four processes write their information on the shared data area
[“Object Data Store” (ODS) in Fig. 2]. The processes Reader 00 and
Reader 01 share the data area ODS 00 to write on. They also access
ODS 01 to read from. The process Reader 03 writes the information
of the helicopter onto ODS 02, while the process monitor provides
them with semaphore facilities. “Controller” in Fig. 2 is the main
controller of the OFP. It uses the data from GCS or values that are
calculated by the Autopilot module with all of the data from the
sensors. The controller reads the data stored in the shared data area
and controls servomotors periodically.

TheOFP should demonstrate its correctness concerning process
communications through the shared data area. Themonitor process
should provide four input processes with correct serialization,
while the controller process should be able to read data within
a predefined timing bound. Any conflicts should be avoided be-
tween the controller and sensing processes in real time. Freedom
from deadlock is also one of the important features to be demon-
strated thoroughly.

Formal Verification

Formal methods (Wing 1990) encompass formal specification and
formal verification. Formal specification is a technique for speci-
fying (modeling) a system on the basis of mathematics and logic.
Various techniques and notations, e.g., algebra, logic, decision
table, graphics, and automata can beused.After completing the formal
specification, formal verification techniques can be applied to the
specification to prove whether the formal model of a system sat-
isfies required properties. There are two main approaches in formal
verification: deductive reasoning and algorithmic verification.

Deductive reasoning uses axioms and proof rules to establish the
reasoning (verification). Experts construct the proofs by hand, and
it usually requires great expertise in mathematics and logic. Even if
tools known as theorem provers, e.g., PVS (Owre et al. 1992), HOL
(Gordon and Melham 1993), can provide a certain degree of auto-
mation, the reasoning procedure itself is too big an obstacle to be
used widely. The algorithmic verification is called model checking
(Clarke et al. 1986; Clarke et al. 1999; McMillan 1993; Huang and
Cheng 1998). It has been widely used in industry (Havelund et al.
1998; Lee et al. 2010b; Yoo et al. 2009), because it verifies finite-state
systems through searching all states’ space exhaustively to check
whether specified correctness conditions are satisfied or not. It per-
forms the verification automatically, but is restricted to the verification
of finite-state systems because of state explosion problems. Deductive
reasoning, on the other hand, has no such limitations. Representative
model checking tools include SMV (McMillan 1993), SPIN (Holz-
mann 1997), VIS (Brayton et al. 1996), and UPPAAL (Bengtsson
et al. 1995).Code verification is also an active research topic, and tools

Fig. 1. Test flight of a small-scale unmanned helicopter

JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012 / 531

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

such as CBMC (Clarke et al. 2004) and BLAST (Henzinger et al.
2003) work directly on C programs.

With respect to the verification of communicating processes in
the OFP, the latter, model checking, is more efficient and cost ef-
fective than the former, theorem proving. The main drawback of
the former, requiring considerable expertise, makes the model
checking techniques better suited for the verification of process
communications. Indeed, as the performance of the model checking
technique and the computation power of computers have increased
rapidly, it has shown more improved performance and efficiency.

Model Checkers

SPIN (Holzmann 1997) is a widely used model checker for verifying
process communications efficiently. If precise models of timing con-
straints are required, UPPAAL (Bengtsson et al. 1995) will be more
useful. A general purpose model checker, Cadence SMV (McMillan
1993), can also be used. In theHELISCOPEproject, SPINwas used for
verifying the correctness of reading processes, which communicate
with each other through the shared data area. UPPAAL was also used
to model and verify real-time scheduling of the OFP controller. A brief
introduction (Berard et al. 2001) to theSPINandUPPAAL is as follows.

The model checker SPIN is a verification tool developed at Bell
Laboratories, designed for simulation and verification of distributed
software systems. The system under SPIN verification needs to be
described in PROMELA (Holzmann et al. 1991), SPIN’s formal
specification language. PROMELA can describe not only the be-
havior of individual process but also interactions between processes.
The SPIN model checker can be used efficiently in two ways:
simulation and verification. The behavior of the systemmodel can be
simulated in steps: automatic or batch mode. SPIN also can verify
specific properties written in PLTL (propositional linear temporal
logic) of the system model. If the checking fails, it produces
a counterexample, a scenario leading to the failure visually.

UPPAAL is an integrated environment for modeling, simulation,
andverificationof real-time systems specified in timed automata. Itwas

developed jointly by Aalborg University and Uppsala University.
UPPAAL provides powerful simulation particularly for real-time
controllers and communication protocols, where real timing aspects
are crucial. It can analyze networks of timed automata, communicat-
ing through channels or shared variables, with real valued clocks.
UPPAAL consists of threemain parts: description language, simulator,
and model checker. The description language is a nondeterministic
guarded command language. The simulator is a validation tool en-
abling examination of possible dynamic executions of a system. The
last one, the model checker, can check invariant and reachability
properties by exploring the entire state space of a system.

Formal Modeling and Verification using SPIN

This section describes how the OFP process communications were
modeled with PROMELA and verified the model against important
properties such as correct reading and mutual exclusion. Fig. 3 illus-
trates communications between four reading processes and their shared
global data area. It also shows semaphoreoperationson the four reading
processes provided by the monitor process. The in-line function was
modeled to access (writing and reading) the shared memory area with
a calling procedure accessN() in PROMELA as described in Fig. 4.

With the PROMELA model in Fig. 4, SPIN model checking was
performed against Properties 1 and 2, which were introduced in the
“Introduction” section.Theproperties arenowrefined into the following:
1. The semaphores managed by the monitor process on four

reading processes should function correctly; and
2. Three processes, Reader 01, Reader 02, and Reader 03, should

access the same global data mutually exclusively.
The simulation was first performed as described in Fig. 5 to

confirm the correctness of the models. The calling procedure
accessN() shows communications between the global shared data
area and four reading processes in the simulation. This procedure
works with mutex variables mutex_A ∼ mutex_E; every process
calls it to access the shared variables. Messages from the monitor

Fig. 2. An overview of process communications in the OFP

532 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Fig. 3. A schema of the PROMELA model for the OFP’s process communications

Fig. 4. A part of the PROMELA program

JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012 / 533

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Fig. 5. A screen dump of the SPIN simulation

Fig. 6. A verification result by the SPIN model checker

534 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

process in the simulation indicate the semaphore operations pro-
vided by the monitor process. After performing the simulation
sufficiently, SPIN model checking was performed against the two
properties, and SPIN proved that these properties were all satisfied,
as shown in Fig. 6. The OFP provides semaphore operations cor-
rectly and there is no unsafe access to the shared data area by the four
reading processes.

It is worth mentioning that the shared memory area in the OFP
was modeled with calling procedures [i.e., accessN() procedure].
This was made possible by a strong advantage of SPIN, which is
modeling communication protocols between independent processes
through channels. However, it also has a limitation on modeling all
the behaviors with other OFP parts such as the controller process.
The controller process has strict timing scheduling and restrictions,
and the behavioral difference between the real implementation (i.e.,
accessing the share data area in real time) and the PROMELAmodel
(i.e., modeling it as procedure calling) might cause problems. To
analyze the timing-related behavior of the controller precisely, it was
decided to use theUPPAALverification system and timed automata,
as introduced in the following section.

Real-Time Modeling and Verification Using UPPAAL

Overview of the OFP

The OFP basically consists of TMO (time-triggered, message-
triggered object) (Kim and Kopetz 1994; Kim 2009b) instances
such as a one time-triggered task and fourmessage-triggered tasks and
ODS (object data store). It also contains periodic and nonperiodic

sensors and actuators. The system was modeled with timed auto-
mata in the UPPAAL verification system to analyze its real-time
behaviors more precisely. Fig. 7 depicts a schema of the timed
automata model of the OFP. It has 16 processes consisting of
four parts of the system: (1) a sensor part to generate and send data;
(2) a monitor and reader part to receive data from sensors and store
data in ODS; (3) an ODS part to be accessed by readers and con-
troller; and (4) a controller part to read data stored in ODS.

Formal Modeling

Assumptions
This paper focuses on the real-time communications between OFP
processes; not only theOFP processes but also the sensors need to be
modeled. The time-triggered task, such as the controller process,
runs with the timing (signal) generated by the timer process, while
the message-triggered tasks, such as the reader and monitor pro-
cesses, run with a message generated by external sensors. Modeling
of the system is based on the assumptions as follows:
• Sensors generate and send a message exactly on their own

periodic time;
• Data transition time between sensors and readers is ignored;
• Error messages are not considered; and
• The order of accessing shared data area, not the number of times,

is considered.

Sensors
Four sensors named NAVsensor, GPSsensor, GCSsensor, and
SWMsensor were modeled. Every sensor generates and sends mes-
sages via channels to the monitor process, which monitors the sensors
and sends messages back to the reader processes. Every sensor except

Fig. 7. A schema of timed automata model of the OFP

Fig. 8. Timed automata models for sensing processes

JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012 / 535

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

GCSsensor has its own sensing cycle (timing) depending on the de-
vice. This model assumes that the processes send a message on a 10-
or 20-Hz cycle. The GCSsensor process has no certain execution
cycle, since it receives messages from the ground by command. The
processes for the four sensors are illustrated in Fig. 8.

Monitor and Readers
Fig. 9 describes the monitor and reader parts with five processes. The
monitor is a process that monitors four serial ports and manages four
reader processes. It has four channels from the sensors and four
channels to reader processes for providing semaphore facilities. If the
Monitor process receives data from a sensor, it posts a semaphore of
the corresponding process to an appropriate reading process. The
other four processes are reader processes [Reader0,Reader1,Reader2,
and Reader3] that wait for a corresponding semaphore until the
monitor receives data and posts its semaphore. Each reader process
accesses the shared data area mutually exclusively as verified in the
previous section.

Object Data Store
Fig. 10 illustrates the object data store modeling with five processes.
TheOFP has five shared data areas, and all OFP processes usemutex
variables and functions to access the shared data area. Themutexwas
modeled using channels. When a process requests for permission
to access a critical section, it locks a mutex variable to prohibit
accessing from other processes. Other processes have to wait for the
unlocking of the mutex. A channel was assigned to each process to
implement shared variables and operations such as lock_mutex() and
unlock_mutex(). If a process requests preemption of a shared var-
iable, then it sends a message through its channel. There is only one
channel to change the state of SharedVar from Idle to Preempted.
Therefore, other processes that request for access to SharedVar
cannot send a message through the channel until SharedVar becomes
Idle and preemption to the shared variable becomes possible.

Controller and Timer
The controller part consists of two processes: a timer (Ticker) and
a controller (Controller) as shown in Fig. 11. The controller process
accesses the shared data area while the reader processes also access

Fig. 9. Timed automata models for monitor and reader processes

Fig. 10. Timed automata models for object data store

Fig. 11. Timed automata models for controller and timer processes

536 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

it simultaneously. The controller process calculates the next values
of the control points (for servomotors) with the shared data and
sends control values to the servos. The controller requires to runwith
a safe execution cycle and deadline, since too rapid or too slow
control of the OFP often results in the UAV (unmanned aerial
vehicle) being out of control. It was modeled in such a way that the
controller process runs by a periodicmessage from the ticker process
running with a 50-Hz period. This cycle is a deadline for the
controller to access the shared data area and calculate the next control
values also.

While the monitor process and all reader processes are message-
triggered tasks, the controller is a time-triggered process. The TMO
scheme regulates so that message-triggered methods (SvM: service
method) cannot disturb the executions of time-triggered methods
(SpM: spontaneous method). Therefore, it was defined that the
controller has a higher priority than others such as the monitor and
reader processes.

Verification Result

With the preceding timed automata model, the UPPAAL model
checking was performed against Properties 3 and 4 introduced in
the “Introduction” section. The properties are refined as follows:
• Each reader process (NavReader, GpsReader, AdtReader and

SwmReader) should read data without losing; and

Table 1. CTL properties for the UPPAAL Verification

Path formula Property (PN) Description

AƒP0 Ctr.Wait0 && Ctr.clk .
t20ms && Reader3.Write

Controller does not wait to
access SharedVar0 over
20 ms while Reader3
accesses SharedVar0

AƒP1 Ctr.Wait1 && Ctr.clk .
t20ms && (Reader0.
Write1 jj Reader1.Write1)

Controller does not wait to
access SharedVar1 over
20 ms while Reader0 or
Reader1 access
SharedVar2

AƒP2 (Ctr.Wait2_0 jj Ctr.
Wait2_1) && Ctr.clk .
t20ms && (Reader0.Write1
jj Reader1.Write1 jj
Reader2.Write2)

Controller does not wait to
access SharedVar2 over
20 ms while Reader0,
Reader1, or Reader2
access SharedVar2

AƒP3 Ctr.Wait3 && Ctr.clk .
t20ms && Reader2.
Write3

Controller does not wait to
access SharedVar3 over
20 ms while Reader2
accesses SharedVar3

AƒP4 Ctr.Wait4 && Ctr.clk .
t20ms && Reader2.
Write4

Controller does not wait to
access SharedVar4 over
20 ms while Reader2
accesses SharedVar4

Fig. 12. Verification results by the UPPAAL verification system

JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012 / 537

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

• The controller process should not wait to access SharedVar over
its timing bound.
The controller process calculates output values for control data

using the data from the five shared variables, and sends control
values back to the SWM to control the helicopter. This process is the
only one which has a deadline in this system. It should be strictly
maintained that the controller runs within its deadline. The control
process also should be able to access the SharedVar shared data
area within its periodic execution time to use appropriate informa-
tion for the current execution cycle.

The safety properties were defined to verify whether unexpected/
incorrect situations occur. The safety property, which is expressed by
thepath formulaAƒw in UPPAAL, asks if the propertyw is always true
in all reachable states. If there is at least one state that satisfies the
propertyw, thenUPPAAL results inNot Satisfied and provides a coun-
terexample, which is a set of execution states to the failing condition of
the property. It helps users analyze an invalid state of the system.

Table 1 shows the properties that were developed to verify the
timed automata model for the OFP. Each property checks that the
controller process does not wait to access the SharedVar due to
the preemption of other reader processes. If the controller is not
blocked over its deadline, then the UPPAAL verification system

results in Satisfied for the property. On the other hand, if the con-
troller is blocked beyond its time bound by other reader processes,
then it results in Not Satisfied. It means the helicopter may lose its
control during the moments the controller process is blocked.

The first property, AƒP0 means the controller should not wait
to access the SharedVar0 over its deadline, since the Reader3 may
write data on the shared data variable simultaneously. Meanings of
the other properties can be interpreted in a similar way. For example,
other properties verify whether the controller can access each
SharedVar in a specific time. They are required to be distinguished
for each other, since a running cycle or the access order of all Reader
processes are different from each other. The properties may also be
changed by the type of equipped sensors.

Fig. 12 shows the verification result of the CTL properties described
in Table 1. All properties resulted inNot Satisfied (red lights). First, the
AƒP0 property was checked again, and UPPAAL’s diagnostic trace
option was changed to simulate the counterexample. Fig. 13 shows the
counterexample of the first property. A path could be traced to an
invalid statewith the simulation control on the left side of theUPPAAL
window, and all variables and clocks for each step from an initial state
to the invalid state could also be seen.The authors reported those results
to the OFP developers and analyzed all counterexamples with them.

Fig. 13. A screen dump of a counterexample simulated by the UPPAAL simulator

538 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

After cooperation with developers and verifiers, the causes that
made the system go into the invalid states were found. One of these
causes is that Reader0 should be ready for receiving data from the
SWMsensor every 50 ms. If Reader0 does not have any restrictions,
then it can preempt the SharedVar0 for 50 ms which is the cycle time
of theSWMSensor. TheController is supposed to run in 50Hz (20ms).
Therefore, the reason for the Not Satisfied is that Reader0 can pre-
empt SharedVar0 longer than the time for which the controller runs.
It was also found that the problem might occur in not only AƒP0 but
alsoAƒP1∼AƒP4. It was concluded that it was due to the fact that there
is no time limitation to access the SharedVar. Two solutions were
devised for the problem. The first is that the SharedVar has a time
limitation to be accessed by all processes. The other is that every
process which accesses the SharedVar has a time limitation to access
the SharedVar for every access.

The model was modified and checked whether the Controller does
not wait to access the SharedVar shared data area with the solution
proposed. The first solution was implemented. A time limitation was
added to the ODS template and the UPPAAL verification was per-
formed again. The time limitation was added on the preempted state,
so that processes can preempt the SharedVar only within the time
limitation. A variable length of time limitation is also applied to the
state to find the minimum length. Fig. 14 represents the modified
ODS template with the minimum time limitation on the preempted
state that was found, and Fig. 15 shows the verification result with the
modified model. It can be seen that all properties result in Satisfied
(green lights).

Related Work

The aerospace industry often uses formal verification techniques to
verify nonfunctional properties such as reliability, security, and safety.
In particular, research on formal verification of UAVs has been in
progress. (Wu et al. 2009) used the model checker UPPAAL to verify
some properties of UAV systems. They verified the UAV’s flight
control system, which is built on TTCAN (time-triggered controller

area network), against important properties concerning reliability,
security, scheduling, and fault-tolerance ability. They designed the
system in two models, and developed 58 timed automata to verify
them using UPPAAL. The approach applied the UPPAAL formal
verification during the designing of the system, while the present
study applies them after finishing the first phase of implementa-
tion. (Chaudemar et al. 2010) introduced safety architectures of
autonomous systems. They applied the Event-B formal method, which
supports the rigorous design of layered systems. The main properties
they verified are about crash probability of and coordination of the
activities between the layers. There is a study that used two different
formal verification techniques, SAL (symbolic analysis laboratory)
and UPPAAL, to model and verify UAV task allocation problems
(Kasam 2008). It used these verification techniques simultaneously to
verify two important constraints, nontiming and timing constraints,
and compared results of the two techniques. The authors of this paper,
on the other hand, applied two different techniques for different
properties of the OFP.

Conclusion and Future Work

This paper developed two different formal models of the OFP de-
veloped in the HELISCOPE project in Korea, and verified them
against important properties concerning real-time process commu-
nications, using the SPIN model checker and the UPPAAL verifi-
cation system. The SPIN model checker was used for verifying the
correctness of communications between four reading processes and
one shared data area. The model checker showed that all processes
access the shared data area mutually exclusively.

Timed automata and theUPPAAL verification systemwere also
used to verify the real-time behavior of the OFP. The verification
found several possible faults that might cause the OFP controller
to be stuck over its execution limits, i.e., it does not meet its timing
constraint. Analysis on the verification results through simulations
with counterexamples showed that it may occur when the con-
troller waits to access the shared data area while one of the other
processes accesses it. It may result in critical situations such as
crashing into obstacles. The possible faults that were found were
reported to the development teams and they analyzed the problem
together with the authors, who suggested solutions for the problem,
and applied one solution to the timed automata model and per-
formed the formal verification again. It showed that the modified
model satisfies the properties, and the solution then was used to
solve the problem in the implementation of the OFP.

The authors are now planning to apply dynamic testing tech-
niques to the OFP, which is real-time embedded software, and will
compare the verification result from themodel-level formal verifications
with that from the code-level testing. There is also a plan to model
the OFPmore thoroughly. For example, a formal model of the TMO
framework on which the OFP runs will help analyzing the OFP’s
real-time scheduling more precisely and thoroughly.

Fig. 14. Modified timed automata template for object data store

Fig. 15. Verification result of the modified model

JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012 / 539

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Acknowledgments

This research was supported by the MKE (The Ministry of Knowl-
edge Economy), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the NIPA (National
IT Industry Promotion Agency) (NIPA-2011-C1090-1131-0003) and
(NIPA-2011-C1090-1131-0008).

References

Alur, R., and Dill, D. L. (1994). “A theory of timed automata.” Theor.
Comput. Sci., 126(2), 183–235.

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P., and Yi, W.
(1995). “UPPAAL—A tool suite for automatic verification of real-
time systems.” Hybrid systems, Springer, Heidelberg, Germany,
232–243.

Berard, B., et al. (2001). Systems and software verification: Model-checking
techniques and tools, Springer, Heidelberg, Germany.

Brayton, R. K., et al. (1996). “VIS: A system for verification and synthesis.”
Computer aided verification, R. Alur and T. A. Henzinger, eds.,
Springer, Heidelberg, Germany, 428–432.

Chaudemar, J.-C., Bensana, E., and Seguin, C. (2010). “Model based safety
analysis for an Unmanned Aerial System.” Proc., Dependable Robots in
Human Environments 2010, IEEE Robotics and Automation Society,
Toulouse, France.

Clarke, E., Grumberg, O., and Peled, D. (1999).Model checking, MIT Press,
Cambridge, MA.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). “Automatic veri-
fication of finite-state concurrent systems using temporal logic speci-
fications.” ACM Trans. Program. Lang. Syst., 8(2), 244–263.

Clarke, E. M., Kroening, D., and Lerda, F. (2004). “A tool for checking
ANSI-C programs.” TACAS 2004, K. Jensen, A. Podelski, eds.,
Springer, Heidelberg, Germany, 168–176.

Gordon, M. J. C., and Melham, T. (1993). Introduction to HOL: A theorem
proving environment for higher order logic, Cambridge University
Press, Cambridge, U.K.

Havelund, K., Lowry, M., and Penix, J. (1998). “Formal analysis of
a space craft controller using SPIN.” Proc., 4th SPIN Workshop,
749–765.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. (2003). “Software
verification with BLAST.” Proc., 10th Int. SPIN Workshop, Vol.
2648, Springer, 235–239.

Holzmann, G. J., (1991). Design and validation of computer protocols,
Prentice Hall, Englewood Cliffs, NJ.

Holzmann, G. J. (1997). “The model checker spin.” IEEE Trans. Software
Eng., 23(5), 279–295.

Huang, S., and Cheng, K. (1998). Formal equivalence checking and design
debugging. Frontiers in electronic testing, Kluwer Academic, Boston.

Kasam, S. (2008). “Formal verification of time constrained UAV task al-
location using model-checking. MS thesis, Univ. of Cincinnati, Cin-
cinnati, OH.

Kim, D.-H., Nodir, K., Chang, C.-H., and Kim, J.-G. (2009a). “HELISCOPE
project: Research goal and survey on related technologies.” Proc., IEEE
12th Int. Symp. on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing in Tokyo, IEEE Computer Society Press, Los Ala-
mitos, CA, 112–118.

Kim, J. G., et al. (2009b). “TMO-eCos2.0 and its development environment
for timeliness guaranteed computing.” Proc., 2009 Software Technol-
ogies for Future Dependable Distributed Systems, IEEE Computer
Society, Washington, DC, 164–168.

Kim, K., and Kopetz, H. (1994). “A real-time object model RTO.k and an
experimental investigation of its potentials.” Proc., 18th Int. Annual
Computer Software and Applications Conf., 1994 (COMPSAC 94),
IEEE, Washington, DC, 392–402.

Kim, S.-G., Song, S.-H., Chang, C.-H., Kim, D.-H., Heu, S., and Kim, J.-G.
(2009c). “Design and implementation of an operational flight program
for an unmanned helicopter FCC based on the TMO scheme.” Proc.,
SEUS 2009, Int. Federation for Information Processing, Newport Beach,
CA, 1–11.

Lee, D.-A., Yoo, J., and Kim, D. (2010a). “Formal verification of process
communications in operational flight program for a small-scale un-
manned helicopter.” Proc., 6th Int. Conf. on Intelligent Unmanned
Systems (ICIUS), Bali, Indonesia, 91–96.

Lee, D.-A., Yoon, S., Lee, M.-Y., Jin, H.-W., and Yoo, J. (2010b). “Formal
verification of protocol stack for most network service using spin.”
Proc., Korea Computer Congress, Korean Institute of Information
Scientists and Engineers, Seoul, 60–61.

McMillan, K. (1993). Symbolic model checking, Kluwer Academic, Boston.
Owre, S., Rushby, J. M., and Shankar, N. (1992). “PVS: A prototype

verification system.” CADE 1992, D. Kapur, ed., 748–752.
Peled, D. (2001). Software reliability methods. Texts in computer science,

Springer, New York.
Wing, J. M. (1990). “A specifier’s introduction to formal methods.”

Computer, 23(9), 8–22.
Wu, X., Ling, H., and Dong, Y. (2009). “On modeling and verifying

of application protocols of TTCAN in flight-control system with
UPPAAL.” Proc., 2009 Int. Conf. on Embedded Software and
Systems, IEEE Computer Society, Washington, DC, 572–577.

Yoo, J., Jee, E., and Cha, S. D. (2009). “Formal modeling and verification
of safety-critical software.” IEEE Software, 26(3), 42–49.

540 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2012

J. Aerosp. Eng. 2012.25:530-540.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

K
O

N
K

U
K

 U
N

IV
E

R
SI

T
Y

 o
n

10
/1

6/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

doi:10.1145/5397.5399
doi:10.1109/32.588521
doi:10.1109/32.588521
doi:10.1109/2.58215
doi:10.1109/MS.2009.67

