
A RESEARCH ON SEAMLESS PLATFORM CHANGE OF
REACTOR PROTECTION SYSTEM FROM PLC TO FPGA

JUNBEOM YOO1*, JONG-HOON LEE1, and JANG-SOO LEE2

1Konkuk University, Division of Computer Science and Engineering 
1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea

2Korea Atomic Energy Research Institute, Man-Machine Interface System Team
989-111 Deadeok-daero Yuseong-gu, Daejeon, 305-353, Republic of Korea

*Corresponding author. E-mail : jbyoo@konkuk.ac.kr

Received October 30, 2012
Accepted for Publication February 12, 2013

1. INTRODUCTION

A safety grade PLC is an industrial digital computer
used to develop safety-critical systems such as RPS (Reactor
Protection System) for nuclear power plants. The software
loaded into a PLC is designed using  specific PLC program-
ming languages [1] such as FBD (Function Block Diagram)
and LD (Ladder Diagram), which are  then translated and
compiled into a C program and executable machine code
of a specific target PLC.

Since the complexity of new RPSs and the maintenance
cost of old RPSs have increased rapidly, we need to find an
efficient alternative for the PLC-based RPS implementation.
One solution [2,3] proposed is to replace PLC with FPGA,
which can provide a powerful computation with lower hard-
ware cost. However, it is a challenge for software engineers
in the nuclear domain to abandoning all experience, knowl-
edge and practice, based on PLC and start an FPGA-based
development from scratch. Such change is also too risky
from the viewpoint of safety. We need to transit to the new
development approach safely and seamlessly, allowing all
software engineers to become familiar with the processes
and procedures required for a proper set up.

This paper proposes an RPS software development
process with a change in the hardware platform from PLC
to FPGA.

Itprovides the fundamentals for a seamless transition
from PLC-based to FPGA-based development. We propose
the use of FBD programs in the design phase of the existing
PLC-based software development to produce the Verilog
program, which is a starting point of typical FPGA devel-
opments. The 'FBDtoVerilog' mechanically transforms
FBDs into behaviorally-equivalent [38] Verilog programs,
and all V&V activities and safety analyses applied before-
hand are still valid in the new hardware platform - FPGA.
In order to demonstrate the effectiveness of the proposed
approach, we performed a case study with an example of
a preliminary version of RPS in a Korean nuclear power
plant, from software requirements of PLC to netlists of
FPGA.

The paper is organized as follows: Section 2 introduces
the FBD and Verilog programming languages, which are
pertinent to our discussion. It also includes a brief intro-
duction to PLC and FPGA. Section 3 explains the PLC-
based RPS development in comparison with the FPGA-
based development. It also introduces a typical RPS archi-

The PLC (Programmable Logic Controller) has been widely used to implement real-time controllers in nuclear RPSs
(Reactor Protection Systems). Increasing complexity and maintenance cost, however, are now demanding more powerful and
cost-effective implementation such as FPGA (Field-Programmable Gate Array). Abandoning all experience and knowledge
accumulated over the decades and starting an all-new development approach is too risky for such safety-critical systems. This
paper proposes an RPS software development process with a platform change from PLC to FPGA, while retaining all outputs
from the established development. This paper transforms FBD designs of the PLC-based software development into a
behaviorally-equivalent Verilog program, which is a starting point of a typical FPGA-based hardware development. We
expect that the proposed software development process can bridge the gap between two software developing approaches with
different platforms, such as PLC and FPGA. This paper also demonstrates its effectiveness using an example of a prototype
version of a real-world RPS in Korea.
KEYWORDS : Embedded Software Development , PLC , FPGA , FBD , Verilog , Program Transformation

477NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

http://dx.doi.org/10.5516/NET.04.2012.078



tecture to aid understanding. Section 4 proposes an RPS
development process with changed platform from PLC to
FPGA. Section 5 shows a case study, pointing out how the
requirements and FBD designs of the existing PLC-based
RPS software development can be effectively transformed
into a starting point of the FPGA-based development.
Related researches are surveyed in Section 6, and Section
7 concludes the paper and gives remarks on future research.

2. BACKGROUND

2.1 PLC
A PLC (Programmable Logic Controller) [4] is a digital

computer used in the  automation of electromechanical
processes. It is designed for multiple input and output ar-
rangements, immunity to electrical noise and resistance to
vibration. It is a good example of a hard real-time system,
since output results must be produced in response to input
conditions within a limited time, otherwise unintended
operation will result.

A PLC has a relatively simple architecture, compared
to naive computers and servers using state-of-the-art micro-
processors and supporting hardware. Sensors and actuators
are plugged in via input and output channels, respectively.
The operating system, managing periodic execution of
PLC applications, reads all input values at the beginning
of each cycle, generates required outputs, and stores system
variables. Software embedded in the PLC is programmed
with the five PLC programming languages defined by IEC
61131-3 [1], e.g., FBD and LD.

A safety grade PLC is required for safety-critical
systems by IEEE 7-4.3.2 [5], EPRI TR-107330 [6] and etc.
Several vendors provide safety-level PLCs for nuclear
reactor protection systems, such as AREVA (http://www.
areva.com), invensys (http://iom.invensys.com) and POSCO
ICT (http://www.poscoict.co.kr). All of these vendors
provide their own PLC software engineering tool-sets for
modeling, verification, simulation, testing and the generation
of executable codes.

2.2 FPGA
An FPGA (Field-Programmable Gate Array) [7,8] is

an integrated circuit, designed to be configured by a cus-
tomer or a designer after being manufactured in field. The
FPGA configuration (i.e., modeling) is generally specified
using a hardware description language (HDL). FPGAs
can be used to implement any logical function normally
performed by  an ASIC. The ability to update the func-
tionality after shipping, partial re-configuration of a portion
of the design, and the low non-recurring engineering costs
relative to an ASIC design offer advantages for many appli-
cations. Many vendors provide various types of FPGA in
industry; Xilinx, Altera, Lattice, Semiconductor, Actel,
Cypress, QuickLogic and Atmel are some examples. The
nuclear industry has tried to use the products of Altera
and Actel.

2.3 FBD
An FBD, one of the widely used PLC programming

languages, consists of an arbitrary number of function
blocks, 'wired' together in a manner similar to a circuit
diagram. The international standard IEC 61131-3 [1] defines
10 categories and all corresponding function blocks. For
example, SUB_INT function block in Fig.1 performs
arithmetic subtraction of two integer inputs.

Fig.1 shows a part of preliminary FBD programs for
the KNICS RPS BP (Bistable Processor) [9]. It creates a
signal 'th_X_Pretrip' when a trip (i.e., shutdown of nuclear
reactor) condition has been satisfied for k_Trip_Delay time
units, as implemented in the TOF timer function block. It
is a warning signal fired before the real one (i.e., th_X_Trip).
The number in parenthesis above each function block de-
notes its execution order. For example, GE_INT numbered
(12) is the first function block executed, while MOVE
numbered (18) is the last one. A large number of FBDs
similar to Fig.1 are assembled hierarchically and executed
according to a predefined sequential execution order. [10]
includes a formal definition of function block diagram in
details.

478 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Fig. 1. An FBD for th_X_Pretrip Logic in KNICS RPS BP



479NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

2.4 Verilog
Verilog is one of the most common HDLs (Hardware

Description Languages) used by IC (Integrated Circuit)
designers. Designs (i.e., hardware configuration) described
in Verilog are technology independent, easy to develop
and debug, and considered more readable than schematics
for ICs. Fig.2 shows a Verilog program translated from the
FBD (Fig.1) according to the translation rules proposed
in [10], both showing identical  behavior.

The Verilog program in Fig.2 has two inputs (clk and
f_X) and one output (th_X_Pretrip). th_Prev_X_Pretrip
stores the value of th_X_Pretrip as defined by the MOVE
function block in the FBD. The FBD's output th_X_Pretrip
is produced in the assign statement (12) ~ (18). It also uses
a reg variable timer to emulate the TOF function block as
the always statements (19) ~ (31). This example restricts
the number of internal states of TOF to 6, for convenience,
as defined in (1). It also uses the clk variable to perform a
synchronized operation. 

3. THE RPS SOFTWARE DEVELOPMENT
PROCESSES

This section explains two RPS software development
processes, a typical one using PLC and a new approach
using FPGA. The new one, however, has not been fully
implemented and verified yet [11,12,13]. This section also
includes a brief introduction to the KNICS RPS to aid
understanding of the RPS development processes.

3.1 An Overview of the KNICS RPS
The KNICS RPS (APR-1400 [14]) is a digital system

in charge of safely shutting down a nuclear reactor in case
of emergency. It has been approved for operational fitness
evaluation tests in two nuclear power plants being built
in Korea. As a safety-critical system, it has 4 redundant and
physically isolated channels to provide defense in depth.
A high-level architecture diagram1 for a single channel,
shown in Fig.3, consists of two bistable processors (BPs),
two coincidence processors (CPs), an automatic test and
interface processor (ATIP) as well as  a cabinet operator
module (COM). The subsystems are interconnected with
different networks. One BP is implemented into one PLC.

Fig. 2. A Verilog Program Translated from the FBD in Fig.1

Fig. 3. A Simplified Architecture of the KNICS RPS [15]

1 Fig.3 represents a preliminary design. The certified design
was modified.



The case study in Section 5 uses 6 representative shutdown
logics in use by the BPs.

A BP generates a trip signal to the CPs by comparing
values of 18 process variables against predefined threshold
values. There are four different trip logics built in the system:
(1) fixed set-point trip (for 10 input variables); (2) variable
set-point trip (3 variables); (3) manual reset trip (3 variables);
and (4) digital trip (2 variables). The details of the logics
will be explained in Section 5.1.2.

Upon receiving trip signals, CPs execute two-out-of-
four voting logic to determine if the trip signal should be
sent to the hardware actuators. All RPS channels are dupli-
cated, and each one has two independent BPs and CPs
respectively. ATIP, primarily used for either manual or
automated tests initiated by operators, interacts with BP
or CP in a single channel or multiple channels as a whole
through the common bus. The COM, located in a operator
room and connected to other processors through the com-
mon bus, has two parts: (1) a computer-based unit which
provides status information regarding the overall RPS equip-
ment, and (2) a hardware unit which performs protection-
related controls such as channel bypass and initiation circuit
reset.

3.2 A Typical PLC-based RPS Software Development
An RPS is a real-time embedded system implemented

on a number of PLCs. The RPS software is designed in
FBD/LD languages and then translated into C programs,
which will be compiled and loaded on PLCs. Fig.4 explains
a typical software development process for RPSs.

The SRS (Software Requirements Specification) is
first written in natural languages or formal specification
languages [16,17,18]. Experts on PLC programming lan-
guages then manually translate the requirements specifi-
cation into design models programmed in FBD or LD. In
case of the NuSCR [17] formal requirements specification
[19], a CASE tool 'NuSCRtoFBD' [20] can translate the
requirements into FBD programs mechanically. The me-
chanical translator, however, cannot encompass design
/implementation-specific considerations, which are manually

performed by software engineers, such as mapping of I/O
and memory addresses.

PLC vendors provide their own automatic translators
from the FBD/LD programs into ANSI C programs, while
typically using the COTS (Commercial Off-the-Shelf)
software such as 'TMS320C55x' of Texas Instruments [21]
for the C compilers. The COTS compilers were well verified
and certified enough to be used without additional verifica-
tion effort. However, the vendor-provided automatic transla-
tors should rigorously demonstrate functional correctness.

Vendors such as AREVA, invensys and POSCO ICT
have provided safety grade PLCs and their own software
engineering tool-sets for nuclear reactor protection systems.
'SPACE' [22] is a software engineering tool-set for AREVA's
PLC 'TELEPERM XS' [23]. It stores FBD programs into
a database 'INGRES' and generates ANSI C programs to
perform code-based testing and simulation ('TXS SIVAT'
[24]). For the checking of consistency between FBD pro-
grams and generated C programs, the ISTec GmbH (http:
//www.istec.de) had developed a reverse engineering tool
'RETRANS' [25]. The mechanical translator in 'SPACE' has
been validated in such ways, and the software engineering
tool-sets have been used successfully for more than a
decade.

PLCs of invensys and its software engineering tool-set
'TriStation 1131' [26] also have been used widely. It pro-
vides enhanced emulation-based testing and real-time
simulation of FBDs, but does not yet introduce a translator
into C programs. KNICS and POSCO ICT in Korea have
recently developed a safety-level PLC 'POSAFE-Q' and its
software engineering tool-set 'pSET' [27]. The tool-set
provides a graphical editor for FBD and LD programming
languages and generates ANSI-C programs mechanically.
However, sufficient demonstration of correctness and
functional safety [57] of the so-called 'FBD-to-C' translator
is still in progress. It must be one of the most critical obsta-
cles that should pass through to get permissions for the
export of the new Korean nuclear power plant [28] as a
whole, i.e., including control software - I&C (Instrumen-
tation & Control).

480 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Fig. 4. A Typical RPS Software Development Process using PLCs



3.3 An FPGA-based RPS Development
Fig.5 depicts a whole FPGA development process [7]

from the viewpoint of software engineers. Software (i.e.,
for RPS) requirements are analyzed and refined in require-
ments analysis and design phases, similar to the PLC-
based development. Whereas the PLC-based development
uses FBD programs as a design specification, it provides
no standard form of requirements and design specifications.
In HDL (Hardware Design Language) code phase, we
need to manually program the designs in HDLs such as
Verilog or VHDL. Some FPGA vendors provide their
own high-level design tools [29], which use flow-charts,
state machines or block diagrams and  can generate HDL
designs mechanically.

After programming the Verilog (or VHDL) programs,
an FPGA is produced mechanically thorough several steps:
synthesis, optimization, placement & routing, design verifi-
cation, configuration and downloading. Software synthesis
tools provided by FPGA vendors such as 'Xilinx ISE Design
Suite' [30] and 'Altera Quartus II' [31] support all steps
seamlessly and mechanically. They also provide systematic
verification and simulation facilities for each synthesis step.

FPGA is not widely used for implementing safety-
critical controllers in RPS, since software engineers in the
nuclear domain are not familiar with its development pro-
cess and techniques. Implementation of the whole RPS with
a number of FPGAs also goes with an all-new architecture.
Safety demonstration of FPGA up to the level of PLC is
also an obstacle for easy-application of FPGA. Section 5.3
shares our further consideration on the FPGA as a means
to implement RPSs.

4. THE RPS SOFTWARE DEVELOPMENT WITH
PLATFORM CHANGE

This paper proposes a new process for the development
of software for the use with protection systems designed
for nuclear reactors. It aims for the seamless and safe tran-
sition from the PLC-based development to the FPGA-based
one in case that the embedded hardware platform changes

from PLC to FPGA. The development process is introduced
first and is followed by an explanation on 'FBDtoVerilog,'
which brides the two RPS software development processes.

4.1 A New Software Development Process for RPS
Our goal is to replace the embedded hardware platform

of RPS - PLC with FPGA, while maintaining all knowledge,
experience and practice accumulated so far. Another goal
of this research is to Prevent potential errors caused by soft-
ware engineers who are not familiar with the new FPGA-
based development. This paper proposes a new RPS soft-
ware development process, as summarized in Fig.6. It can
bridge the two RPS software development processes seam-
lessly and safely, while using all knowledge of the old
PLC-based development and moving to the new FPGA-
based development.

481NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Fig. 5. An RPS Software Development Process using FPGA

Fig. 6. The Proposed RPS Software Development Process with
Platform Change



482 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

The proposed process first follows the PLC-based soft-
ware development summarized in Fig.4, up to the design
phase. Software requirements are analyzed and specified
first, and then design specifications of FBD programs are
produced manually, same as before. All V&V activities and
safety analyses in the PLC-based development (e.g., those
in [18]) are also performed and applied. The 'FBDtoVerilog'
translator then transforms the verified FBD program into a
behaviorally-equivalent Verilog program, which corresponds
to the HDL coding phase in the FPGA-based development
depicted in Fig.5. The RPS software development now
transits seamlessly from the PLC-based to the FPGA-based
development. All activities left in producing an FPGA is the
role of FPGA synthesis tools provided by FPGA vendors.

The 'FBDtoVerilog' enables us to overcome the gap
between two different platform-based RPS developments
by translating design models of the old into behaviorally-
equivalent HDL models of the new. This paper uses a re-
fined and improved version of the 'FBDtoVerilog' translator,
which had been developed for several purposes [10,32,
33,34]. The following section will focus on the detailed
explanation of the above mentioned translator.

4.2 FBDtoVerilog
The 'FBDtoVerilog' is an automatic translator, from

FBD programs into behaviorally-equivalent Verilog pro-
grams. We have developed several versions of the 'FBD
toVerilog' for different purposes, such as formal verification
of FBD designs and indirect verification of the 'FBDtoC'
translator. An overall explanation on the previous versions
is introduced first, and new features of the proposed version
is then followed.

Our first work 'FBDVerifier' [33] aimed to verify an
FBD program using the SMV model checker [35]. It trans-
lates an FBD program into a behaviorally-equivalent Verilog
program and executes SMV seamlessly. It also provides
a visual analysis on the verification results (i.e., LTL model
checking [36] and counter-examples). SMV regards all
Verilog programs as Synchronous Verilog (SV) [37], and
we had to resolve the concern over the unexpected con-
version of synchronous and asynchronous behavior.

The next versions [10,32] aims to verify FBD programs
with the VIS verification system [38]. These also separate
the so-called 'FBDtoVerilog' translator from specific FBD
formats of PLC vendors. They read  FBD programs which
follow the de facto standard of PLCopen TC6 [39], not a
vendor-specific FBD format. Since VIS is a synthesis and
verification tool for IC development, its input programming
language - Verilog is more primitive, sensitive and detailed
than that of SMV. For example, if two Verilog variables
under equivalence checking do not have the same size in
bits, VIS often produces a wrong calculation result, not
an error.

The 'FBDtoVerilog' translator in [34] tried to verify the
functional correctness of the 'FBDtoC' translator, indirectly.
PLC vendors provide their own FBDtoC translator and

have verified and demonstrated function correctness of
the translators in various ways, as explained in Section 3.1.
We tried to translate FBD programs into behaviorally-
equivalent Verilog programs first, and performed the HW-
CBMC [40] verification which checks the functional
equivalence between Verilog programs and C programs.
The translation rules for the HW-CBMC verification use
the Verilog module as a unit of translation, since HW-
CBMC cannot read the Verilog function which is the basic
unit of the previous translations.

The former 'FBDtoVerilog' translators all aim at the
formal verification of FBD programs by translating FBDs
into behaviorally equivalent Verilog programs, even if
diverse formal verification tools are used such as SMV, VIS
and HW-CBMC. Therefore, due to the inherent limitation
of model checking techniques [41], the size of FBD program
is not large. They all consider about only an individual
reactor shutdown logic of 100 ~ 200 function blocks.

This paper, however, uses the translator for the purpose
of development, not formal verification. We had to scale
up the translation capability from an individual shutdown
logic to a whole RPS BP, structuring with 18 logics. The
scale-up accompanies refinement of the translator as follows:

• Variable renaming : Systematic renaming of com-
ponent FBDs and intermediate/external outputs, and
restructuring of internal data structures are required
to translate multiple depths of RPS hierarchy.

• Explicit type conversion : With some cases, implicit
type conversion does not word correctly. All type con-
versions now use explicitly function blocks of type
conversion (e.g., integer-to-boolean or vise versa).

• Eclipse plug-in : The new 'FBDtoVerilog' has been
re-implemented as an independent Eclipse plug-in in
order to be integrated intimately with other software
engineering tools in the 'NuDE' environment [42].

This paper developed a new version of 'FBDtoVerilog'
as shown in Fig.7. It reflects the scale-up issues above all,
and was also developed as an Eclipse plug-in. Former ver-
sions are all JAVA applications. Whereas former versions
were embedded in 'NuSCRtoFBD' [18] or 'FBDVerifier'
and called internally for the purpose of formal verification,
the current one is an individual and independent tool, sup-
porting the design/implementation phase for FPGA devel-
opment as well as the FBD verification. It can read an FBD
program of standard XML format defined by PLCopen
and produce a behaviorally-equivalent Verilog program.
Any FBD program which follows the TC6 standard of
PLCopen can be translated into an equivalent Verilog
program. For example, 'pSET2TC6' [43] is a translator for
the software engineering tool 'pSET' of POSCO ICT. It
reads an output file of 'pSET' and translates it into an FBD
program of the PLCopen TC6. The new 'FBDtoVerilog'
also can read an FBD system, which is hierarchically
structured with more than 1,000 function blocks, and
produces one Verilog program for the whole FBD system.



5. CASE STUDY

This section demonstrates the effectiveness of the pro-
posed RPS software development process, which can seam-
lessly transit from the PLC-based to the FPGA-based devel-
opment. Section 5.1 explains the whole process of per-
forming the case study, according to the software devel-
opment life-cycle (SDLC). Section 5.2 includes an expla-
nation of the detailed features of the FPGA synthesis as well
as its sources such as FBD and Verilog programs. Section
5.3 includes our further consideration on the proposed
process in order to apply it to an actual RPS development.

5.1 Case Study Plan
Fig.8 describes the whole process of our case study.

We applied the new RPS software development process
to a preliminary version of the KNICS APR-1400 RPS BP
in Korea [14]. The RPS was developed by the KNICS [9]
project consortium and several export contracts have been
undergoing. The case study demonstrates that, proceeding
with the software development life-cycle, the RPS software
development allows for a smooth transition from the PLC-
based development to the FPGA-based one.

5.1.1 Requirements Analysis
The case study starts from a formal requirements speci-

fication [19] written in NuSCR [17]. The KNICS project
consortium used the formal requirement specification to
achieve diversity of software requirements specifications.
It was developed for prototyping purpose, but modeled all
shutdown logics of the RPS BP completely. Its supporting
tool-sets ('NuSRS' and 'NuSCRtoFBD') generate behav-
iorally-equivalent FBD programs mechanically [20]. Formal
verification techniques (e.g., model checking and equiv-
alence checking) and safety analyses can also be applied to
the requirements [18]. The tool-sets have been re-imple-
mented in order to be integrated into a new development
environment, called 'NuDE' [42].

5.1.2 Design
The mechanically generated FBD is structured with

more function blocks than the one developed by experts
manually, about 50%. However, it includes all important
and fundamental shutdown logics for the RPS BP. This
case study uses 6 shutdown logics as the directory infor-
mation window at the left part of 'NuSCRtoFBD' shows.
The whole RPS BP is composed of 18 logics, but the cate-
gory below encompasses all the logics.

• Fixed set-point logic : It has a fixed set-point of firing
a shutdown signal. If an input value crosses the point
in rising or falling manner, the shutdown signal is fired.
(e.g., g_LO_SG1_LEVEL , g_HI_LOG_POWER)

• Variable set-point logic : It has a variable set-point of
firing a shutdown signal, varying with the same (rising
or falling) rate of the change of input variable until a
predefined fixed limit. If the varying rate of the input
variable is more than the fixed limit, the shutdown
signal is fired.
(e.g., g_VAR_OVER_PWR , g_SG1_LO_FLOW)

• Manual reset logic : It has a fixed set-point of firing a
shutdown signal, but an operator can delay the shutdown
by moving the set-point to an upper point (in case of a
rising input flow) by pushing a reset button. The operator
can push the reset button several times for specific
purposes. 

483NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Fig. 7. A Screen-dump of the New 'FBDtoVerilog' (An Eclipse
Plug-in)

Fig. 8. An Overview of the Case Study Performed



(e.g., g_LO_PZR_PRESS)
• Digital logic : It is called a 'digital trip.' It does not

check whether it has to fire or not a shutdown signal,
but just passes an input signal (0 or 1) to output. An
input or output of 0 will lead to a shutdown signal.
Different from other shutdown logics, other logic prior
to the BP calculates the shutdown condition and just
passes the result to it.
(e.g., g_HI_LOCAL_POWER)

5.1.3 Between Design and Implementation
The actual software development of typical PLC-based

approaches is nearly concluded in the design phase, since
PLC vendors' software engineering tools translate those
FBDs into C programs and compile them into executable
machine codes for specific PLCs, mechanically. At the
design phase of the PLC-based development, the new
development process transits to the FPGA- based devel-
opment seamlessly thorough the 'FBDtoVerilog.'

The 'FBDtoVerilog' translates the whole FBD programs
into a Verilog program, mechanically. It reads FBD pro-
grams in the standard XML format of PLCopen, and pro-
duces a behaviorally-equivalent Verilog program which the
FPGA synthesis tools can read accurately. As we mentioned
in Section 4.2, the new 'FBDtoVerilog' translator is now
not a verification-supporting tool but a development (imple-
mentation) tool. The scale-up issues were considered care-
fully and re-implemented as an independent Eclipse plug-
in as shown in Fig.8.

5.1.4 FPGA Implementation
The Verilog program translated from the FBD programs

by the new 'FBDtoVerilog' is a starting point of the FPGA-
based development. The case study uses two automatic
synthesis tools, 'Xilinx ISE Design Suite' [30] and 'Altera
Quartus II' [31], to produce netlists and JEDEC files. The
research also used an FPGA development platform of
'Xilinx XC3S1500 Spartan' and produced an FPGA for

the 6 logics of the KNICS RPS BP. Detailed features of
the FPGA synthesis are explained in the next section.

5.2 The Case Study Summary
Table1 summarizes features of the FBD programs,

translated from the formal requirements specification by
'NuSCRtoFBD,' as shown in Fig.8 The actual starting
point of the case study, the NuSCR formal requirements
specification [19], is beyond the scope of this paper and a
detailed description of its features can be found in [19]. The
formal requirements specification includes 6 shutdown
logics in the KNICS RPS BP. These are all translated into
an FBD program 'g_BP' with 792 function blocks in 4
levels of depth. Since an FBD is a sequential program, the
FBD program of 792 function blocks sequentially executes
all function blocks once every execution cycle. Complexity
of the translated FBDs varies according to the category of
shutdown logics. For example, the digital logic is translated
into the simplest FBD program with no timer function
block, while the manual reset logic into the longest one
with a number of EOs, IOs and timer function blocks. EO
means external outputs while IO does intermediate/internal
outputs used for storing information to use later. Many-IOs
indicate high-complexity of the shutdown logic, indirectly.

Table 2 explains the features of the Verilog program
translated from the FBD, which is summarized in Table1
by the new 'FBDtoVerilog.' The FBD program of 792
function blocks is translated into a Verilog program 'g_BP'
of 8,258 lines. It calls the 318 Verilog modules sequentially
according to their execution orders, while all modules call
Verilog functions 781 times. A Verilog function corresponds
to a function block in FBD, such as ADD_INT or SEL.
A Verilog module also corresponds to a component FBD.
Since all Verilog functions used in a Verilog module should
be defined within the definition of the Verilog module, the
same Verilog functions are redundantly defined several
times in different modules.

The Verilog program analyzed in Table 2 is the starting
point of the FPGA-based development. Two FPGA syn-

484 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Table 1. A Feature of the FBD Program used

Category # of FBs # of Comp.
FBDs

# of Sys.
FBDs # of EOs # of IOs # of timer

FBs

g_LO_SG1_LEVEL

g_HI_LOG_POWER

g_VAR_OVER_PWR

g_SG1_LO_FLOW

g_LO_PZR_PRESS

g_HI_LOCAL_POWER

g_BP

Fixed set-point 

Fixed set-point

Variable set-point

Variable set-point

Manual reset

Digital logic

Total

FB: Function Block , EO: External Output, IO: Internal/Immediate Output

77

89

186

186

204

50

792

31

37

44

45

52

18

227

6

8

9

9

12

4

48

6

8

9

9

12

4

48

23

27

32

33

36

14

165

2

2

2

2

3

0

11



thesis tools, Xilinx ISE Design Suite' and 'Altera Quartus
II,' read the Verilog program and synthesized FPGA pro-
grams (i.e., a set of netlists and registers). Table 3 is the
result of the FPGA synthesis by using 'Xilinx ISE Design
Suite.' It produced 147 combinationals and 40 registers,
but optimization step produced 54 LUTs and 13 registers.
Fig. 9 is a report summarizing the whole FPGA synthesis,
produced by the tool.

Table 4 is the synthesis result of the'Altera Quartus II'
synthesis tool, after the optimization step. Compared with
the 'Xilinx ISE Design Suite,' it provides more detailed
numbers of combinationals and registers for individual
modules. They both, however, use the same number of
netlists (i.e., combinationals and registers). This paper used
the 'Xilinx ISE Design Suite' to download the configuration
into an FPGA.

Table 5 summarizes important features of all outputs,
from the PLC design phase to the FPGA implementation.
It is not an exact analysis, but it is obvious that the FPGA
implementation consists of fewer elements than the more
abstract ones such as FBD and Verilog programs.

5.3 Further Consideration
We are now considering the following issues carefully

to apply the proposed RPS development process to an
actual RPS development:

• Radiation Resistance of FPGA : Recent research [44,
45] has reported that a specific type of FPGA using

SRAM is vulnerable to radiation. It is obvious that this
type of FPGA is inappropriate in the  implementation
of RPSs. The FPGA of 'Xilinx,' which the case study

485NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Table 2. A Feature of the Verilog Program Translated by the New 'FBDtoVerilog'

Verilog

g_LO_SG1_LEVEL

g_HI_LOG_POWER

g_VAR_OVER_PWR

g_SG1_LO_FLOW

g_LO_PZR_PRESS

g_HI_LOCAL_POWER

g_BP

FBD

# of FBs

77

89

186

186

204

50

792

# of modules

39

47

55

56

68

53

318 (1)

# of func. def.

48

58

83

84

90

24

387

# of func. calls

75

87

184

184

201

50

781

Table 3. A Feature of the FPGA Synthesized by 'Xilinx ISE Design Suite'

Combinationals

g_BP

g_BP(optimized)

# of Adders/Subtractors

37

LUTs

54

# of Counters

11

# of Comparators

99

Registers

# of Registers

40

Registers

13

LUT: Look-Up Table

Fig. 9. A synthesis Summary Report from 'Xilinx ISE Design
Suite'



used, is the type vulnerable to radiation, and we need
to find an appropriate FPGA for RPS.

• VHDL Generator : 'Mentor Graphics's HDL Designer
Series' [29] is an example of VHDL generator, widely
used to implement FPGA and ASIC mechanically. It
models system behavior with various tools, such as
FSM (Finite State Machine), flow-chart and block
diagrams, and mechanically generates a behaviorally-
equivalent VHDL program. It corresponds to 'FBDto
Verilog' in our approach. However, it is the tool of
hardware designers not of software engineers.

• RTL Optimization : The optimization step of FPGA
synthesis tools produced several warnings worth looking
into carefully. For example, it warned that some wire
variables in the Verilog program were not used and it
deleted them, even if they were all used correctly. We
need to analyze the optimization process and potential
threats to the functional correctness of the RPS BP.

• Functional Safety of FBDtoVerilog : Functional safety
and correctness of the 'FBDtoVerilog' translator should
be demonstrated thoroughly in various ways. Whereas
it was a supporting CASE tool for formal verification
using SMV, VIS and HW-CBMC, it is now a develop-
ment tool bridging PLC-based and FPGA-based devel-
opment. More rigorous demonstration of functional
safety and correctness is highly required.

• Functional Safety of FPGA Synthesis Tools : Func-
tional safety and correctness of FPGA synthesis tools
(e.g., 'Xilinx ISE Design Suite' and 'Altera Quartus II')
is also one of key issues in overcoming the wide-spread
commercialization of the FPGA-based RPS develop-
ment.

• Highly Integrated RPS Components : As depicted in
Fig. 3, an RPS is structured with many components
such as BPs and CPs, which were implemented in an
individual PLC with a network-based communication.
We are now going to implement a channel (consisting
of 2 BPs, 2 CPs and communication networks) in an
FPGA. Communication between components in a chan-
nel and with ones in other channels should be designed
in an FPGA. I/O is also an issue to be resolved, since
the PLC provides with convenient ways to interface
with I/O devices.

6. RELATED WORK

There are several approaches to implement RPSs with
Programmable logic device (PLD) such as an FPGA. PLD
has been widely used by many industries such as aviation,
space, chemical, military and other highly safety-critical
industries. Nuclear industry has also been interested in the
approach and technology [46,47]. The IAEA workshop
on 'Application of Field-Programmable Gate Array in
Nuclear Power Plants' was held for 3 years from 2008, and
attempts to implement I&C systems in NPPs with FPGA
were presented as follows.

Radiy [48] in Ukraine has developed a few FPGA-
based safety-critical digital I&C systems [13,49]. CS Inno-
vation [50] in USA provides an FPGA development plat-
form - 'ALS' (Advanced Logic System) for implementing
safety-critical I&C systems. Wolf Creek Nuclear Operating
Corporation used it to modify a main steam and feed water
isolation system [51]. Several researches and prototypes also
have been under development by KAERI (Korea Atomic
Energy Research Institute) in Korea [11,12].

7 . CONCLUSION AND FUTURE WORK

This paper proposes an RPS software development
process with a platform change from PLC to FPGA, while
retaining all outputs from the established development.
The new 'FBDtoVerilog' translator transforms FBD
designs of the PLC-based software development into a
behaviorally-equivalent Verilog program which is a
starting point of typical FPGA-based development. In
order to confirm the effectiveness of the proposed
approach, we performed a case study with an example of
a preliminary prototype version of the KNICS RPS BP,
and demonstrated a seamless transition from the PLC-
based development to the FPGA-based one.

486 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA

Table 5. Important Features of the FBD, Verilog and FPGA Program in a Sequence

g_BP

FBD

# of FBs

792

# of modules

318

# of func. calls

781

# of combinationals

54

# of registers

13

Verilog Netlist

g_LO_SG1_LEVEL

g_HI_LOG_POWER

g_VAR_OVER_PWR

g_SG1_LO_FLOW

g_LO_PZR_PRESS

g_HI_LOCAL_POWER

g_BP

Netlist

# of combinationals

9

9

16

5

6

9

54

# of registers

3

2

8

0

0

0

13

Table 4. A Feature of the FPGA Synthesized by 'Altera Quartus II'



This paper used an example of FBD programs, which
were mechanically translated from a formal requirements
specification and have different features from the ones pro-
grammed manually. We are planning to apply the proposed
development process to an actual FBD program designed
by FBD programmers. Rigorous demonstration of functional
correctness and safety of 'FBDtoVerilog' and the FPGA
synthesis tools is also an ongoing research issue to resolve
for the wide use of the FPGA-based RPSs. We are planning
to apply to 'FBDtoVerilog' the 'safety/dependablilty case'
approach [52] as well as compiler verification techniques
[53]. Our recent survey on the translator verification [54]
suggests that the credible compilation [55] and translation
validation [56] techniques would be good candidates for
the verification. We are currently focusing on analyzing the
effect of the RTL optimization by FPGA synthesis tools.

ACKNOWLEDGEMENT
This research was supported by Basic Science Research

Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2010-0002566). It was also supported by
the MKE (The Ministry of Knowledge Economy), Korea,
under the Development of Performance Improvement
Technology for Engineering Tool of Safety PLC (Pro-
grammable Logic Controller) program supervised by the
KETEP (Korea Institute of Energy Technology Evaluation
And Planning)" (KETEP-2010-T1001-01038) and a grant
from the Korea Ministry of Strategy, under the develop-
ment of the integrated framework of I&C conformity as-
sessment, sustainable monitoring, and emergency response
for nuclear facilities.

REFERENCES_______________________________
[  1  ] IEC: International Electrotechnical Commission, Interna-

tional standard for programmable controllers: Programming
languages, part 3 (1993).

[  2  ] J. She, "Investigation on the Benefits of Safety Margin
Improvement in CANDU Nuclear Power Plant Using an
FPGA-based Shutdown System", Ph.D. thesis, The Univer-
isity of Western Ontario (2012).

[  3  ] Korea Atomic Energy Research Institute (KAERI), Survey
of the CPLD/FPGA Technology for Application to NPP
Digital I&C System, Tech. Rep. (2009).

[  4  ] WIKIPEDIA, Programmable logic controller, http://en.
wikipedia.org/wiki/Programmable logic controller.

[  5  ] The Institute of Electrical and Electronics Engineers, Inc.,
"IEEE 7-4.3.2: Standard Criteria for Digital Computers in
Safety Systems of Nuclear Power Generating Stations",
IEEE 7-4.3.2 (2010).

[  6  ] Electronic Power Research Institute (EPRI), "Generic
Requirements Specification for Qualifying a Commercially
Available PLC for Safety-Related Application in NPPs",
Tech. Rep. EPRI TR-107330 (1996).

[  7  ] J. R. Stephen Brown, FPGA and CPLD Architectures: A
Tutorial, vol. 13 (1996).

[  8  ] Wikipedia, Field-programmable gate array, http://en.wikipedia.
org/wiki/FPGA.

[  9  ] KNICS, Korea nuclear instrumentation and control system
r&d center, http://www.knics.re.kr/english/eindex.html.

[ 10 ] J. Yoo, S. Cha, E. Jee, "Verification of PLC Programs written
in FBD with VIS", Nuclear Engineering and Technology,
vol. 41 (1), pp.79-90 (2009).

[ 11 ] J. G. Choi, "Experiences of an FPGA-based Safety-Critical
System Development for an Application to Nuclear Power
Plants in Korea", 1st Workshop on the Applications of Field-
Programmable Gate Arrays in Nuclear Power Plants (2008).

[ 12 ] J.-K. Lee, "Design and Verification Process for Developing
the FPGA-based Firmware for NPPs", 1st Workshop on
the Applications of Field-Programmable Gate Arrays in
Nuclear Power Plants (2008). 

[ 13 ] A. Siora, "Experience of RPC "Radiy" in Designing, Manu-
facturing and Implementation of FPGA based NPP I&C
Systems", 1st Workshop on the Applications of Field-Pro-
grammable Gate Arrays in Nuclear Power Plants (2008).

[ 14 ] Korea Atomic Energy Research Institute (KAERI), "Software
Design Specification for Reactor Protection System", KNICS-
RPS-SD231 Rev.02 (2006).

[ 15 ] S. Mishra, D. Kushwaha, A. Misra, "Hybrid Reliable Load
Balancing with Mosix as Middleware and its Formal Verifi-
cation using Process Algebra", Future Generation Computer
System, vol. 28 (8), pp.1272-1282 (2012).

[ 16 ] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, "Automated
Consistency Checking of Requirements Specifications",
IEEE Transactions on Software Engineering, vol. 5 (3),
pp.231-261 (1996).

[ 17 ] J. Yoo, T. Kim, S. Cha, J.-S. Lee, H. S. Son, "A Formal
Software Requirements Specification Method for Digital
Nuclear Plants Protection Systems", Journal of Systems
and Software, vol. 74 (1), pp.73-83 (2005).

[ 18 ] J. Yoo, E. Jee, S. Cha, "Formal Modeling and Verification
of Safety-Critical Software", IEEE Software, vol. 26 (3),
pp.42-49 (2009).

[ 19 ] Korea Atomic Energy Research Institute (KAERI), "SRS for
Reactor Protection System", KNICS-RPS-SRS101 Rev.00
(2003).

[ 20 ] J. Yoo, S. Cha, C. H. Kim, D. Y. Song, "Synthesis of FBD-
based PLC Design from NuSCR Formal Specification",
Reliability Engineering and System Safety, vol. 87 (2),
pp.287-294 (2005).

[ 21 ] TEXAS INSTRUMENTS, "TMS320C55x Optimizing
C/C++ Compiler Users Guide", Tech. Rep. SPRU281F
(2003).

[ 22 ] SIEMENS, "Space, Engineering System of Teleperm XS
PLC", Tech. Rep. KWU NLL1-1026-76-V1.0/11.96
(1996).

[ 23 ] SIEMENS, "Teleperm XS, Brief Description", Tech. Rep.
KWU NLL1-1004-76-V2.2/04.98 (1998).

[ 24 ] S. Richter, J. Wittig, "Verification and Validation Process
for Safety I&C Systems", Nuclear Plant Journal, May-
June, pp.36-40 (2003)

[ 25 ] ISTec, RETRANS, "Reverse Engineering Tool for FBD
Programming of Teleperm XS PLC, Tech. Rep. (1997).

[ 26 ] invensys, Safety software suite, TriStation 1131 (TS1131),
http://iom.invensys.com/.

[ 27 ] S. Cho, K. Koo, B. You, T.-W. Kim, T. Shim, J. S. Lee,
"Development of the Loader Software for PLC program-
ming", Conference of the the Institute of Electronics Engi-
neers of Korea, vol. 30, pp.959-960 (2007)

487NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA



[ 28 ] WIKIPEDIA, Nuclear power in south korea, http://en.
wikipedia.org/wiki/Nuclear power in South Korea.

[ 29 ] Mentor Graphics Corporation, "HDL Designer Series User
Manual", Software Version 2008.1 Edition (2008).

[ 30 ] Xilinx, Xilinx ise design suite, http://www.xilinx.com
/products/.

[ 31 ] Altera, Altera quartus ii, http://www.altera.com/products
/software/.

[ 32 ] J. Yoo, J.-H. Lee, S. Jeong, S. Cha, "FBDtoVerilog: A
Vendor-Independent Translation from FBDs into Verilog
Programs", The 23rd international Conference on
Software Engineering and Knowledge Engineering (SEKE
2011), pp. 48-51 (2011).

[ 33 ] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, P. Seong,
"FBDVerifier: Interactive and Visual Analysis of Counter-
example in Formal Verification of Function Block Diagram",
Journal of Research and Practice in Information Technology,
vol. 42 (3), pp.255-272 (2010).

[ 34 ] D.-A. Lee, J. Yoo, J.-S. Lee, "Equivalence Checking
between Function Block Diagrams and C Programs using
HW-CBMC", The 30th International Conference on Com-
puter Safety, Reliability and Security (SAFECOMP 2011),
pp.397-408 (2011).

[ 35 ] K. L. McMillan, Symbolic Model Checking, Kluwer
Academic Publishers (1993).

[ 36 ] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking,
MIT Press (1999).

[ 37 ] Synchronous verilog, http://www.cs.ru.nl/ spitters/onderwijs
/sl1/materiaal/smv/tutorial/node56.html.

[ 38 ] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P.
Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,
S. Sarwary, T. R. Shiple, G. Swamy, T. Villa, "VIS: A
System for Verification and Synthesis", The 8th International
Conference on Computer Aided Verification (CAV '96),
pp.428-432 (1996).

[ 39 ] PLCopen, Plcopen for efficiency in automation, http://www.
plcopen.org.

[ 40 ] E. M. Clarke, D. Kroening, "Hardware Verification using
ANSI-C Programs as a Reference", Proceedings of the 2003
Asia and South Pacific Design Automation Conference,
pp.308-311 (2003).

[ 41 ] E. M. Clarke, E. A. Emerson, A. P. Sistla, "Automatic Verifi-
cation of Finite-State Concurrent Systems using Temporal
Logic Specifications", ACM Trans. Programming Languages
and Systems, vol. 8 (2), pp.244-263 (1986).

[ 42 ] J.-H. Lee, J. Yoo, "NuDE: Development Environment for
Safety-Critical Software of Nuclear Power Plant", Trans-
actions of the Korean Nuclear Society Spring Meeting 2012,
pp.114-1155 (2012).

[ 43 ] D.-A. Lee, J. Yoo, "pSET2TC6: A Translation Tool to
Standardize the Output Format of pSET", KIISE Spring
Meeting 2011, vol. 38, pp.105-107 (2011).

[ 44 ] D. Dangla, "FPGA for Space Applications", 1st Workshop
on the Applications of Field-Programmable Gate Arrays
in Nuclear Power Plants (2008).

[ 45 ] J. Wang, "Radiations Effects in FPGAs", 9th Workshop on
Electronics for LHC Experiments (2003).

[ 46 ] U.S.NRC: United States Nuclear Regulatory Commission,
Review guidelines for field-programmable gate arrays in
nuclear power plants safety systems, nUREG/CR-7006
(2010).

[ 47 ] Electronic Power Research Institute (EPRI), "Guidelines
on the Use of Field Programmable Gate Arrays in Nuclear
Power Plant I*8C Systems", Tech. Rep. EPRI TR-1019181
(2009).

[ 48 ] Radiy, www.radiy.com.
[ 49 ] A. Siora, "FPGA Properties and Safety Assurance of NPP

I&C Systems", 1st Workshop on the Applications of Field-
Programmable Gate Arrays in Nuclear Power Plants (2008).

[ 50 ] CS Innovation, www.cs-innovation.com.
[ 51 ] B. F. Dittman, "Regulatory Experience with FPGA-based

Digital I&C Review", 2nd Workshop on the Applications
of Field-Programmable Gate Arrays in Nuclear Power
Plants (2009).

[ 52 ] D. Jackson, "A Direct Path to Dependable Software", Com-
munications of the ACM, vol. 52 (4), pp.78-88 (2009).

[ 53 ] M. A. Dave, "Compiler Verification: A Bibliography",
ACM SIGSOFT Software Engineering Notes, vol. 28 (6),
pp.2-2 (2003).

[ 54 ] E.-S. Lee, D.-A. Lee, J. Yoo, "A Survey on the Verification
Methods for Translator", Proceeding of Korea Conference
on Software Engineering (KCSE 2013) (2013).

[ 55 ] M. Rinard, D. Marinov, "Credible Compilation with
Pointers", Proceedings of FLoC Workshop on Run-Time
Result Verification, Trento (1999).

[ 56 ] A. Pnueli, M. Siegel, E. Singerman, "Translation Validation",
Tools and Algorithms for the Construction and Analysis of
Systems, pp.151-166 (1998).

[ 57 ] International Electrotechnical Commission (IEC), Functional
safety of electrical/electronic/programmable electronic
safety-related systems, IEC 61508, 2005

488 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.45  NO.4  AUGUST 2013

YOO et al., A Research on Seamless Platform Change of a Reactor Protection System from PLC to FPGA


