A Verification Framework for FBD based Software in Nuclear Power Plants

JUNBEOM YOO

KONKUK University, Korea jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr

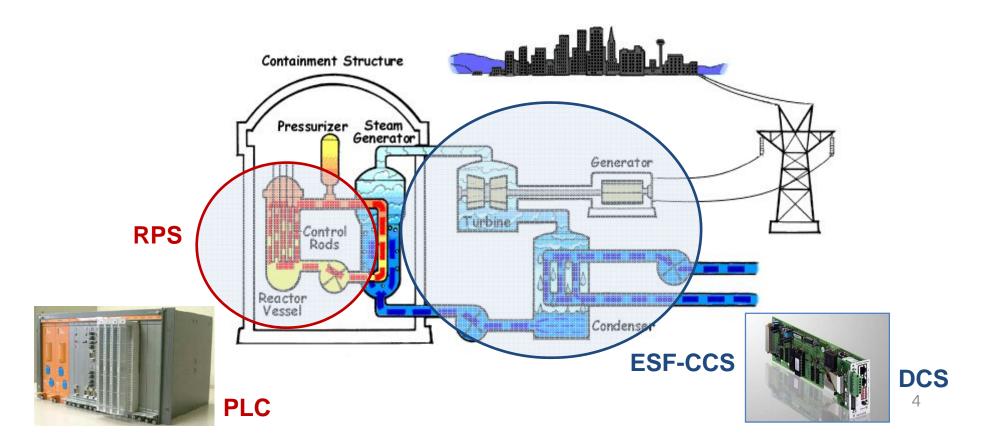
Other Authors

Sungdeok Cha

- Professor in Korea University

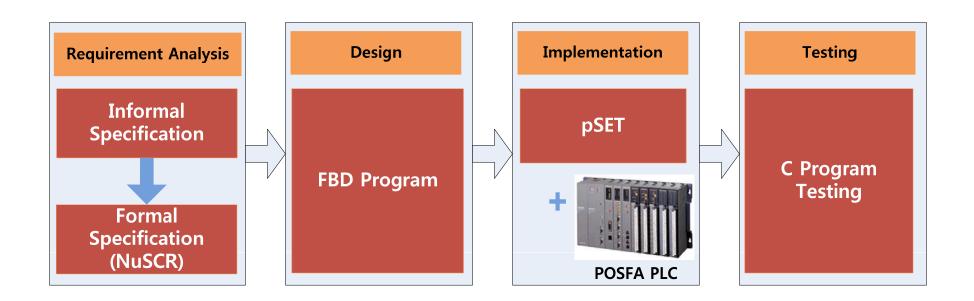
Enukyoung Jee

- PhD Candidate in KAIST

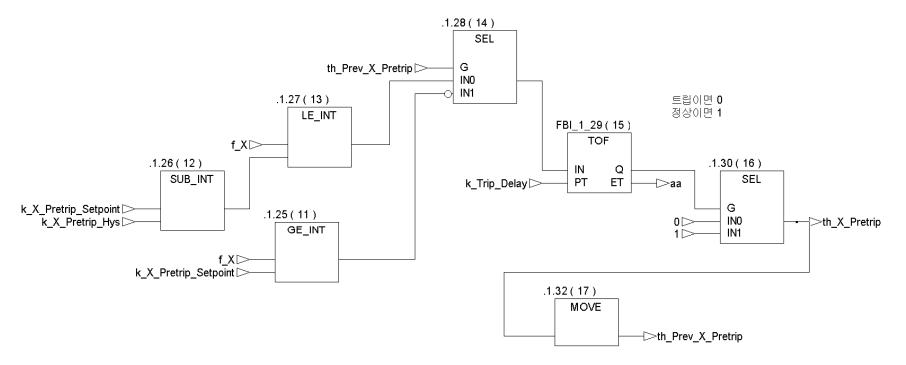


Contents

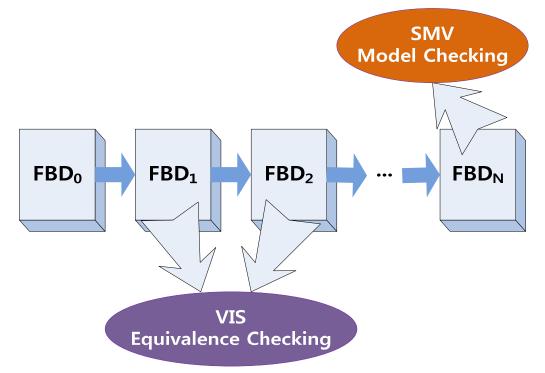
- Introduction
 - Safety-Critical Software in Nuclear Power Plants
 - Software Development Process
- Background
 - FBD
- Verification Framework
 - VIS Equivalence Checking
 - SMV Model Checking
 - Case Study
- Conclusion & Future Work


Introduction

- Safety-Critical Software in Nuclear Power Plants
 - RPS (Reactor Protection System)
 - ESF-CCS (Engineering Safety Features Component Control System)


Introduction

- A Software Development Process for RPS in KNICS APR-1400 NPP
 - (<u>http://www.knics.re.kr/english/eindex.html</u>)


Background

- FBD (Function Block Diagram)
 - IEC 61131-3 standard declared 5 programming languages for PLC (ST, LD, IL, SFC, FBD)
 - KNICS consortium decided to use FBD to program KNICS RPS software
 - Sequential Interconnections between function blocks

Verification Framework

- In design phase,
- Two different formal verifications to verify FBD programs efficiently,
- Based on our experience on KNICS RPS for 7 years
 - Equivalence Checking : VIS verification system (ver.2.0)
 - Model Checking : Cadence SMV model checker

1. SMV Model Checking

- <u>SMV Model Checking</u> with LTL properties
 - Cadence SMV model checker (<u>http://www.kenmcmil.com/smv.html</u>)
 - An extension of SMV from CMU
 - CTL / LTL model checking
 - Two front-ends
 - SMV input programs (for CTL/LTL properties)
 - Verilog program (for LTL properties)
 - FBD Verifier 1.0 (<u>http://dslab.konkuk.ac.kr/Nuclear-Design/FBD_Verifier.htm</u>)
 - Translates FBD into Verilog automatically
 - Properties are inserted into Verilog programs (through "assert" statement)
 - Executes Cadence SMV with translated Verilog program seamlessly

- 1. Read an FBD program in standard XML format
- 2. Translate the FBD into an equivalent Verilog program

3 PLC		Verilog			ſ
📁 ss Jee\FBD Verifier 1.0 (200611 by jeon)\FBD2V\examp	Ie\FIX_RISIN	D:\Research\(7)	Miss Jee\FBD V	erifier 1.0 (200611 by jeon)\FBD2V\examp	Ie\FIX_RIS
IN1 :=		module main (clk, HYS,	MAXCNT, PHYS, PV_OUT);	-
ADD (input clk		—	
IN1 :=		input	[7:0]	HYS;	
TSP,		input	[7:0]	MAXCNT;	
IN2 :=		input	[7:0]	PHYS;	
HYS))		reg	[7:0]	PTRIP_CNT;	1
		reg		PTRIP_LOGIC;	
TRIP LOGIC :=		reg	[7:0]	PTSP;	
SEL (input	[7:0]	PV OUT;	
G :=		reg	[7:0]	TRIP_CNT;	
AND (reg		TRIP LOGIC;	
IN1 :=		reg	[7:0]	TSP;	
LT (
IN1 :=		wire	[8:0]	PTRIP_CNT_out;	
PV OUT,		wire		PTRIP LOGIC 1;	
IN2 :=		wire	[7:0]	PTSP 1;	
PTSP),		wire	[8:0]	TRIP_CNT_out;	
IN2 :=		wire		TRIP LOGIC 1;	
PTRIP_LOGIC),		wire	[7:0]	TSP 1;	
INO :=		wire		TRIP_LOGIC_out;	
PTRIP LOGIC,		wire	[8:0]	TSP_out;	
IN1 :=		wire		PTRIP LOGIC out;	
0)		wire	[8:0]	PTSP_out;	
102.°C	_				
PTSP :=		//constan			
SEL (assign HYS = 1;			
G :=	•	assign MA	XCNT = 5;		

3. Execute Cadence SMV model checker

74 FIX_RISING	â, v									
<u>F</u> ile <u>P</u> rop	<u>V</u> iew	<u>G</u> oto	H <u>i</u> story	Abstract	tion				ŀ	lelp
Browser	Prope	rtiae	<u>R</u> esults	<u>C</u> one	Usina	<u>G</u> rou	ne			
	FIQPE	Tues	Results	Goue	osi <u>n</u> g		P2			
□ : (top lev - PTRI - PTRI - PTRI - PTRI - PTRI	IP_LOGIC IP_LOGIC IP_LOGIC IP_LOGIC IP_LOGIC P P_1 P_2) 2_1 2_2 2_3	ayer							
₽-PTS										-
Source	Trace	Log								ى
<u>s</u> ource	Trace	F.a								- d
Fil <u>e</u> Sho	<u>w</u>									
module ma //con `defi `defi `defi `defi	nstants ine ine	HYS PHYS PTSP_K TSP_K	0		,			 	51_040,7	
-	clk;									
reg reg input reg reg	;	[7:0] [7:0] [7:0]	PTRIP_ PTSP; PV_OUT TRIP_L TSP;	· ·;						
wire			TRIP L	OGIC 1;						
wire wire		[7:0]	TSP_1; TRIP_L	.OGIC_2;						
wire wire		[7:0]	TSP_2; TRIPI	OGIC 3;						
wire		[7:0]	TSP_3;	-						
outpu outpu		[7:0]	TRIP_L TSP ou	OGIC_ou	t;					
Gaepa		[1.0]	ou					 		
								i-sear	ch:	

Case Study

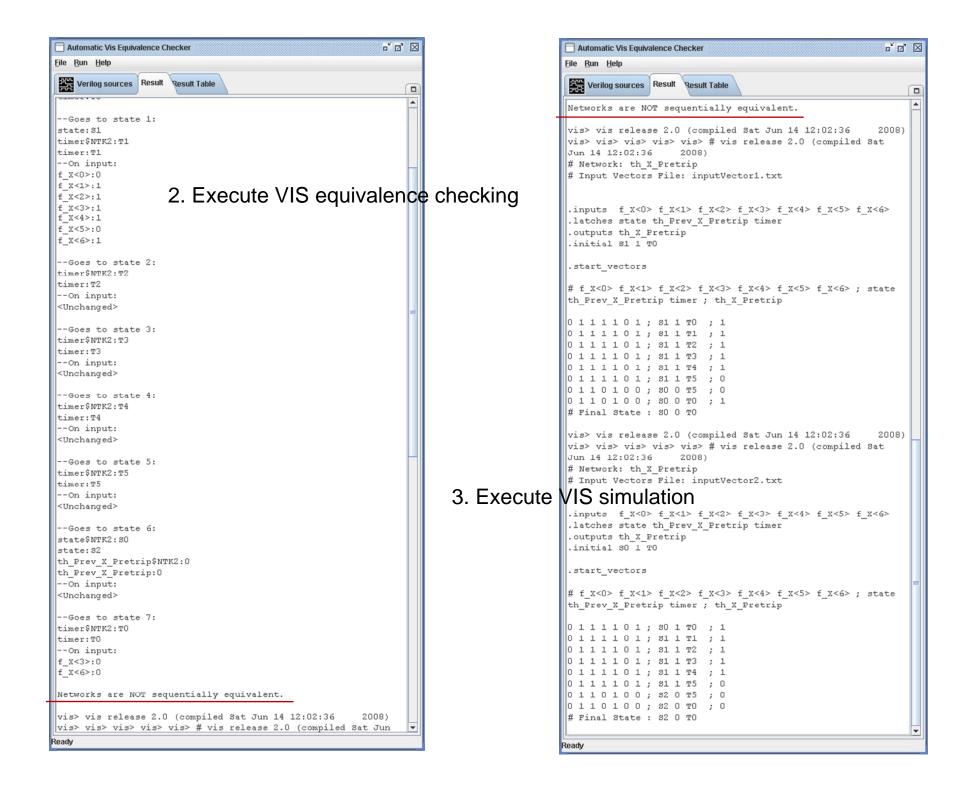
- SMV model checking for KNCIS RPS BP & CP
 - Performed to up-to-date whole KNICS-RPS-SDS231 Rev.02

System	# of pages of requirements Spec. (Natural lang.)	# of function blocks	# of variables	# of lines in Verilog model
BP	190	1,335	1,038	7,862
СР	163	1,623	820	3,085

- Found a few, not many important verification results

System		BP	СР
# of Properties		216	83
	Incorrect Logic	14	6
	Omission	0	2
Found Errors	Ambiguous Logic	4	0
	Incorrect FBD	13	5
	Incorrect Design	16	0
Total # of Errors			13
Distinct # of Errors		10	3 1

2. VIS Equivalence Checking


- <u>Behavioral Equivalence Checking</u> between two FBD programs
 - VIS verification system 2.0 (http://embedded.eecs.berkeley.edu/research/vis//)
 - Widely used in hardware design,
 - Simulation
 - CTL model checking
 - Equivalence checking
 - Etc.
 - Reads Verilog program
 - But, no graphical interface
 - VIS Analyzer 1.0 (http://dslab.konkuk.ac.kr/Nuclear-Design/VIS_Analyzer.htm)
 - Seamless execution of VIS verifications
 - $vl2mv \rightarrow read_blif_mv \rightarrow flatten_hierarchy \rightarrow seq_verify$, simulate
 - Automatic reorganization of verification result through VIS simulation

1. Read two Verilog programs

Ready

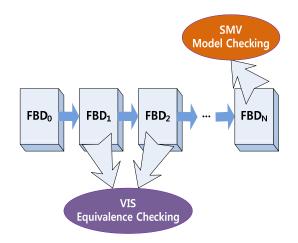
Automatic Vis Equivalence Checker	- d 🛛 🖂
<u>File Run Help</u>	
Verilog sources Result Result Table	
Verilog 1	Verilog 2
C:\KC2007\TeX\home\VIS\vis-2.0\examples\RPS\FBD_Verifier\th_X_Pretrip_Manua	C:\KC2007\TeX\home\VIS\vis-2.0\examples\RPS\FBD_Verifier\th_X_Pretrip_Mech.v
<pre>typedef enum {30, S1} th_X_Pretrip_state; typedef enum {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20} timer_state;</pre>	typedef enum {S0, S1, S2} th_X_Pretrip_state; typedef enum {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20} timer_state;
<pre>`define k_Pretrip_Setpoint 30 `define k_X_Pretrip_Hys 10 //`define k_Trip_Delay 20 =</pre>	<pre>`define k_Pretrip_Setpoint 30 `define k_X_Pretrip_Hys 10 //`define k_Trip_Delay 20</pre>
<pre>// th_X_Pretrip module module th_X_Pretrip(clk, f_X, th_X_Pretrip);</pre>	<pre>// th_X_Pretrip module module th_X_Pretrip(clk, f_X, th_X_Pretrip);</pre>
input clk;	input clk;
<pre>input[0:6] f_X;</pre>	<pre>input[0:6] f_X;</pre>
output th_X_Pretrip;	output th_X_Pretrip;
//integer wire f_X;	//integer wire f_X;
//integer f_X;	//integer f_X;
wire th_X_Pretrip;	wire th_X_Pretrip;
th_X_Pretrip_state reg state;	th_X_Pretrip_state reg state;
reg th_Prev_X_Pretrip;	reg th_Prev_X_Pretrip;
timer_state reg timer;	timer_state reg timer;
initial state = S1;	initial state = SO;
<pre>initial th_Prev_X_Pretrip = 1;</pre>	<pre>initial th_Prev_X_Pretrip = 1;</pre>
initial timer = TO;	initial timer = TO;
<pre>assign th_X_Pretrip = (state==30 && f_X <= `k_Pretrip_Setpoint - `k_X_Pretrip_Hys)?1:</pre>	<pre>wire Cond_a_1; wire Cond_b_1; wire Cond_c_1;</pre>
(state== 30 && f_X >	<pre>assign Cond_a_1 = (f_X >= `k_Pretrip_Setpoint);</pre>
`k_Pretrip_Setpoint - `k_X_Pretrip_Hys &&	assign Cond_b_1 = ((f_X >=
timer != T5)?1:	<pre>`k_Pretrip_Setpoint) && (timer == T5)); ((agging Cond of 1 = (f X < `k_Pretrip_Setpoint);</pre>
(state==31 && f_X <	<pre>//assign Cond_c_l = (f_X < `k_Pretrip_Setpoint</pre>

13

4. Display a full trace for counterexample

le <u>R</u> un <u>H</u> elp Verilog sou	rces Result Result	Table			
# state	input	File1Output	File2Output	File1 State	File2State
)	Initial	Initial	Initial	S1 1 T0	S0 1 T0
	61	1	1	S1 1 T1	S1 1 T1
2	61	1	1	S1 1 T2	S1 1 T2
3	61	1	1	S1 1 T3	S1 1 T3
1	61	1	1	S1 1 T4	S1 1 T4
5	61	1	1	S1 1 T5	S1 1 T5
ò	61	0	0	S0 0 T5	S2 0 T5
7	52	0	0	S0 0 T0	S2 0 T0
3	52	1	0	Null	Null

Case Study


- VIS equivalence checking for KNCIS RPS BP
 - We didn't meet the schedule, so a few official verification results are left only.
 - Requirements: KNICS-RPS-SRS101 Rev.00 (prototype)
 - Original FBD: KNICS-RPS-SDS101 Rev.00 (prototype)
 - Compared FBD: Synthesized automatically from the requirements spec.

Found several errors

Trip Logic	Error Type	Compared FBD (Num. of Errors)	Original FBD (Num. of Errors)
Fixed Set-Point Rising Trip	Syntactic	0	0
without Operating Bypass	Logical	0	1
Manual Reset Variable Set-Point Trip	Syntactic	0	3
without Operating Bypass	Logical	6	2

Conclusion & Future Work

- We proposed a software verification framework
 - Target: KNICS RPS
 - HW: PLC (Programmable Logic Controller)
 - SW: FBD (Function Block Diagram)
 - Two verification techniques together
 - SMV Model Checking (Cadence SMV + FBD Verifier)
 - VIS Equivalence Checking (VIS 2.0 + VIS Analyzer)
 - They performed the formal verification of KNICS RPS sufficiently.
- We're planning
 - A combined tool-set (FBD Verifier + VIS analyzer) with enhanced GUIs
 - Enhance through applying to other systems (e.g. ESF-CCS)

