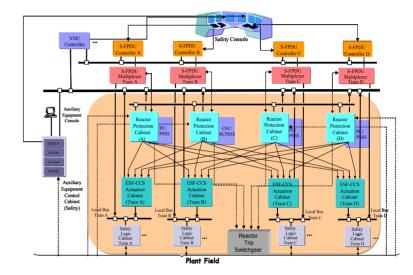
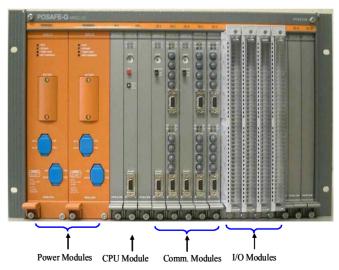
Application of STPA to ESF-CCS

Dong-Ah Lee, Jang-Soo Lee, Se-Woo Cheon, and Junbeom Yoo

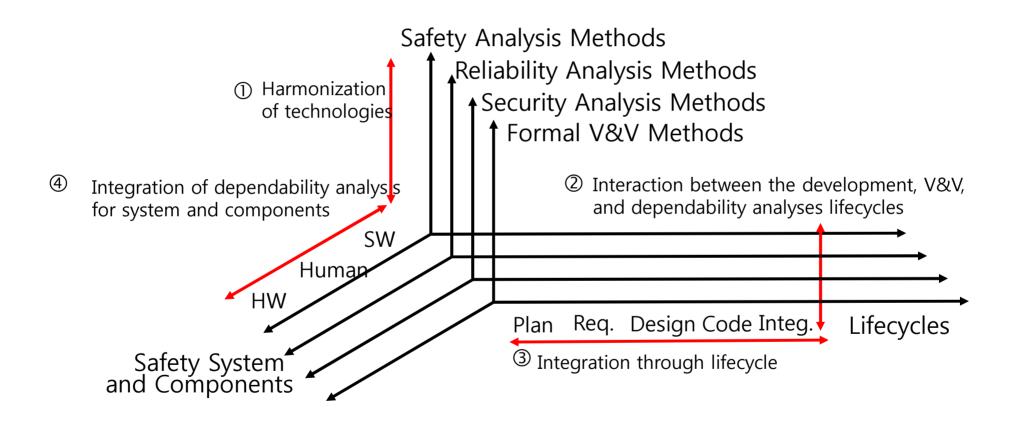
Contents

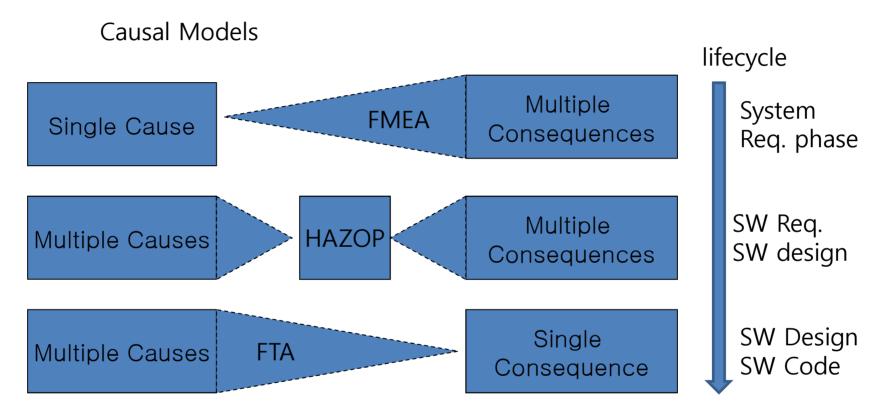

- Background: KNICS experiences
- Introduction: New HA approach
- Application: Case study of STPA
- Conclusion
- Discussion
 - on a harmonized dependability engineering



Background:

Korea Nuclear I&C System (KNICS)


- Instrumentation and Control (I&C) systems and equipment for APR1400 Nuclear Power Plant (NPP)
- Period: July 2001 ~ April 2008 (7 years)
- Target
 - Fully digitalized I&C systems development for APR1400 (Shin-Ulchin units #1&2)
 - I&C upgrade for existing NPPs



KNICS Dependability Engineering

Hazard Analysis of KNICS

Focused HA through lifecycle Harmonized (top-down and bottom-up) HA HAZOP checklists with guidewords developed by KAERI and LLNL FTA templates for FBD program

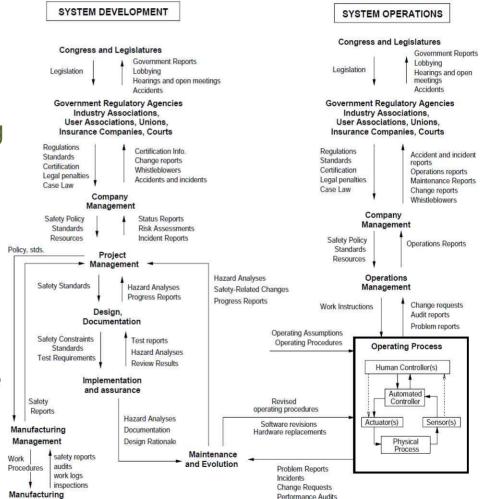
Experiences from KNICS project

- Safety evidences
 - For developing the I&C system of a nuclear power plant, more than 1000 reports had been produced and had to be traceable through the lifecycle from the system requirements.
- Hazard analysis of complex systems(systems of systems) with traditional methods(FTA, HAZOP) was extremely difficult to justify the safety
- Most hazards came from the wrong interaction of the components (SW, HW, Human)

New Approach

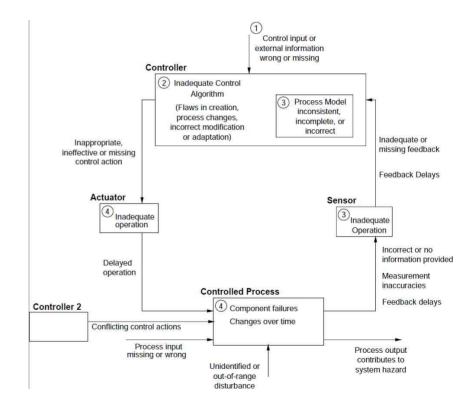
• Traditional hazard analysis techniques, FTA, FMEA, and HAZOP, were not sufficient for modern systems.

- More complex, software-intensive, socio-technical


- STAMP: a new accident causality model
- STPA: a new hazard analysis technique based on STAMP
- Prof. Nancy Leveson, MIT, "Engineering a Safer World"

Introduction:

STAMP (System-Theoretic Accident Model and Processes)


- A new accident causality model based on systems theory and systems thinking
- Basic concepts
 - Safety constraints
 - Safety verification
 - Hierarchical safety control structure
 - Safety is trans-scientific issue

STPA(System-Theoretic Process Analysis)

- A new hazard analysis technique based on STAMP
- 4 types of inadequate control actions (Hazards)
 - Not provided
 - Provided
 - Wrong timing
 - Wrong duration

ESF-CCS

- Engineered Safety Features-Components Control System
- To mitigates the consequences of design-basis or lossof-coolant accident
- 8 operational functions

Function	Description	
SIAS	Safety Injection Actuation Signal	
CIAS	Containment Isolation Actuation signal	
MSIS	Main Stream Isolation Signal	
CSAS	Containment Spray Actuation Signal	
AFAS	Auxiliary Feed-water Actuation Signal	
CREVAS	EVAS Control Room Emergency Ventilation Actuation Signal	
FHEVAS	Fuel Handling Area Emergency Ventilation Actuation Signal	
CPIAS	Containment Purge Isolation Actuation Signal	

APPLICATION (0)

- Three functions
 - SIAS, CSAS, and CREVAS
- STPA steps
 - 1. Identify hazardous states of the system.
 - 2. Develop the control structure of the system.
 - 3. Identify the potential for inadequate control of the system that could lead to a hazardous state.
 - 4. Determine the causal factors of the hazardous control action

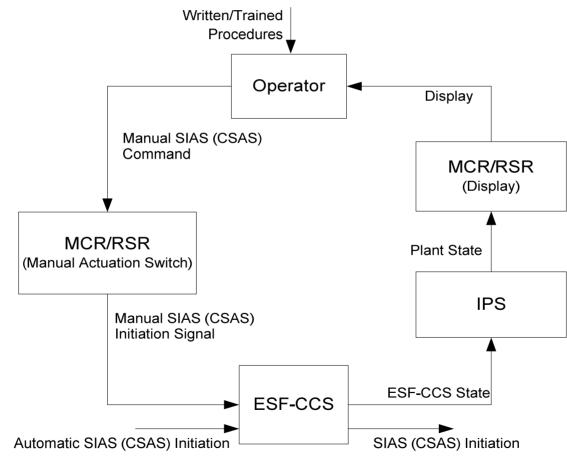
APPLICATION (1)

- 1. Identify hazardous states of the SIAS system.
- Hazard
 - Reactor core is damaged because the SIAS does not operate when the 4 events—LOCA, 2ndHSL, S/WP-Ex, or REA—occur.
- Safety constraint
 - The SIAS must operate when the 4 events—LOCA, 2ndHSL,

S/WP-Ex, or REA—occur.

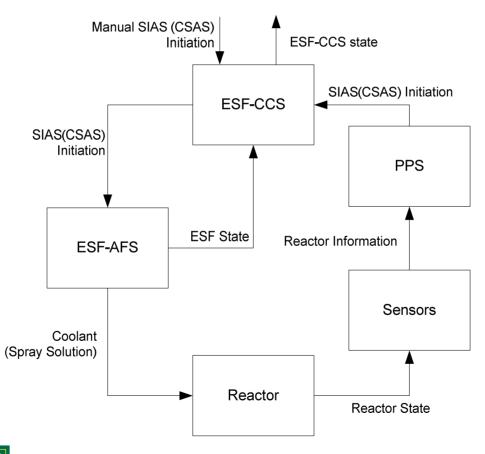
LOCA	Loss Of Coolant Accident		
2 nd HSL	Second Heat Sink Loss		
S/WP-Ex	Steam- and Water-pipe explosion		
REA	Rod Ejection Accident		

APPLICATION (1)


Hazards and Safety Constraints

Function	Hazard	Safety Constraint
SIAS	Reactor core is damaged because t he SIAS does not operate when the 4 events—LOCA, 2 nd HSL, S/WP-Ex, or REA—occur.	The SIAS must operate when the 4 events—LOCA, 2 nd HSL, S/WP-Ex, or REA—occur.
CSAS	Heat removal and fission clean up f ail when the three events—LOCA, S /WP-Ex, or the SIAS—occur.	· · · · · · · · · · · · · · · · · · ·
CREVAS	control room fails when the two ev	The CREVAS must operate when th e two events—High-level radioactiv e at air intakes of MCR or the SIAS —occur.

APPLICATION (2)


2. Develop the **control structure** of the system.

APPLICATION (2)

Control structure

APPLICATION (3)

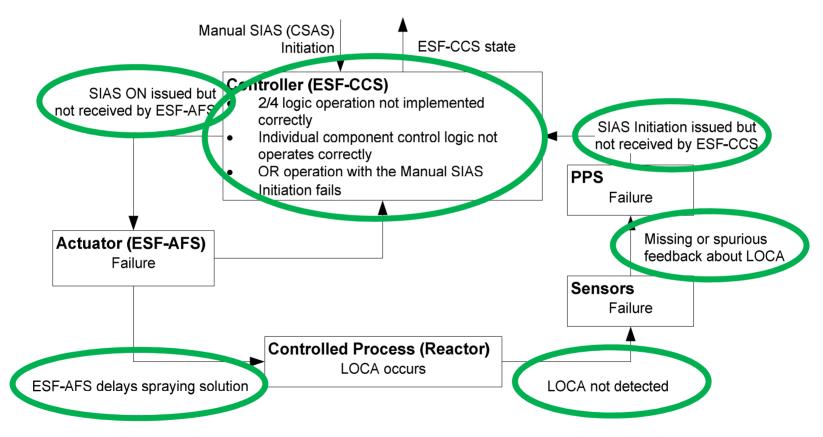
3. Identify the potential for inadequate control of the system that

could lead to a hazardous state.

Control Action	Not Providing Caus es Hazard	Providing Causes Hazard	Wrong Timing or Order Causes Hazard	Stopped Too Soon or Applied Too Long
SIAS ON (From ES F-CCS to ESF-AFS)	ON when S/WP-Ex o ccurs (a3)	Not hazardous	When LOCA occurs, ESF-CC S waits too long to turn SIA S ON (c1) When 2ndHSL occurs, ESF-C CS waits too long to turn SI AS ON (c2) When S/WP-Ex occurs, ESF- CCS waits too long to turn SIAS ON (c3) When REA occurs, ESF-CCS waits too long to turn SIAS ON (c4) When Manual SIAS Initiatio n occurs, ESF-CCS waits too long to turn SIAS ON (c5)	SIAS ON stops be fore coolant is no t provided enoug h (d1)

APPLICATION (3)

Hazardous behaviour of the SIAS


Control Action	Not Providing Causes Hazard	Providing Causes Hazard	Wrong Timing or Order Causes Hazard	Stopped Too Soon or Appli ed Too Long
SIAS ON (From ESF-CCS t o ESF-AFS)	Not providing SIAS ON when LOCA occurs (a1) Not providing SIAS ON when 2ndH SL occurs (a2) Not providing SIAS ON when S/WP -Ex occurs (a3) Not providing SIAS ON when REA occurs (a4) Not providing SIAS ON when Man ual SIAS Initiation occurs (a5)	Not hazardous	When LOCA occurs, ESF-CCS waits too lo ng to turn SIAS ON (c1) When 2ndHSL occurs, ESF-CCS waits too long to turn SIAS ON (c2) When S/WP-Ex occurs, ESF-CCS waits to o long to turn SIAS ON (c3) When REA occurs, ESF-CCS waits too lon g to turn SIAS ON (c4) When Manual SIAS Initiation occurs, ESF- CCS waits too long to turn SIAS ON (c5)	SIAS ON stops before coolan t is not provided enough (d1)
SIAS OFF (From ESF-CCS t o ESF-AFS)	ESF-CCS t Not hazardous Providing SIAS OFF		SIAS OFF is provided before the tempera ture decrease enough (c6)	Not hazardous
Manual SIAS O N (From Operat or to MCR/RSR) Not providing SIAS ON when 2ndH SL occurs (a6) Not providing SIAS ON when 2ndH SL occurs (a7) Not providing SIAS ON when S/WP -Ex occurs (a8) Not providing SIAS ON when REA occurs (a9)		Not hazardous	When LOCA occurs, ESF-CCS waits too lo ng to turn SIAS ON (c7) When 2ndHSL occurs, ESF-CCS waits too long to turn SIAS ON (c8) When S/WP-Ex occurs, ESF-CCS waits to o long to turn SIAS ON (c9) When REA occurs, ESF-CCS waits too lon g to turn SIAS ON (c10)	Not hazardous

APPLICATION (4)

4. Determine the causal factors of the hazardous control action

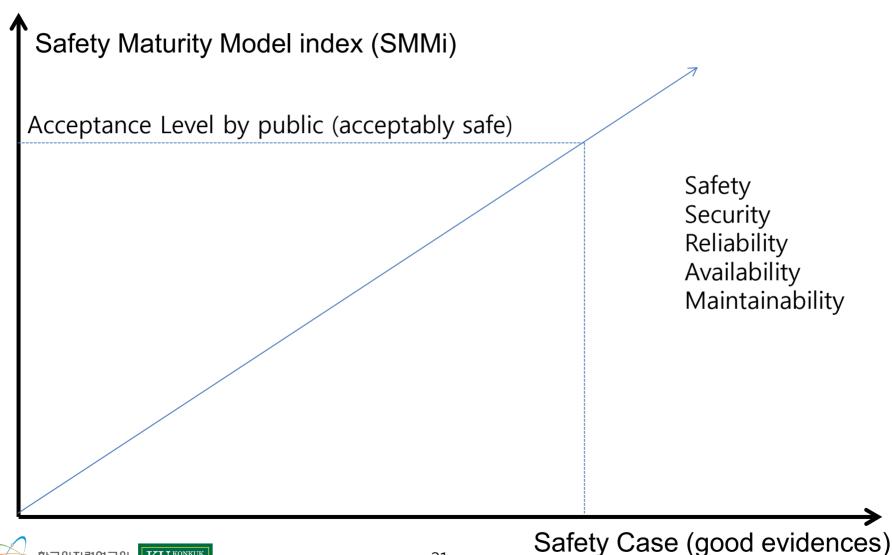
Hazard: Not providing SIAS ON when LOCA occur (a1)

Need to create requirements specification without control flaws

APPLICATION (4)

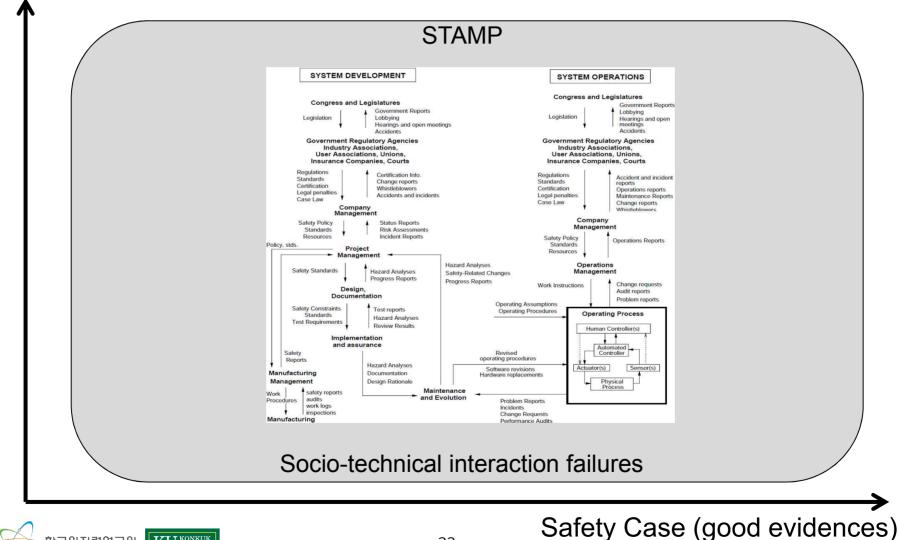
Causal factors of unsafe control actions of SIAS (a1-a9)

UCAs	A part of the safety control structure	Causal Factors	
		2/4 logic operation not implemented correctly	
	ESF-CCS	Individual component control logic not operates correctly	
		OR operation with the Manual SIAS Initiation fails	
	SIAS On(ESF-CCS to ESF-AFS)	SIAS ON issued but not received by ESF-AFS	
	ESF-AFS	ESF-AFS fails to implement its function	
(a1-a4)	Release Coolant (ESF-AFS to Reactor)	ESF-AFS delays spraying solution	
	Sensing (Reactor to Sensor)	The 4 events is not detected by Sensor	
	Sensor	Sensor fails	
	Reactor's state (Sensor to PPS)	Sensor provides spurious feedback	
	PPS	PPS received the feedback correctly but does not issue SIAS Initiation	
	SIAS Initiation (PPS to ESF-CCS)	SIAS Initiation issued but not received by ESF-CCS	
	ESF-CCS	OR operation with the SIAS Initiation of PPS fails	
(a5)	SIAS On(ESF-CCS to ESF-AFS)	SIAS ON issued but not received by ESF-AFS	
(03)	ESF-AFS	ESF-AFS fails to implement its function	
	Release Coolant (ESF-AFS to Reactor)	ESF-AFS delays spraying solution	
	Operator	Judgement fails about the 4 events	
		Misunderstanding about state of Safety Injection operation	
	Manual SIAS (Operator to MCR/RSR)	SIAS Initiation issued but not received by MCR/RSR	
	MCR/RSR (Manual Actuation Switch)	Manual Actuation Switch fails	
(a6-a9)	Manual SIAS Initiation Signal (MCR/RSR to ESF-CC S)	Manual SIAS Initiation Signal issued but not received by ESF-CCS	
	ESF-CCS State (ESF-CCS to IPS)	ESF-CCS provides spurious information about Safety Injection	
		Information about Safety Injection issued but not received by IPS	
	MCR/RSR (Display)	MCR/RSR fails to display information	
	Display (MCR/RSR to Operator)	Information of the 4 events issued but not received by Operator	
		MCR/RSR displays spurious information about the 4 events and Safety Injection	

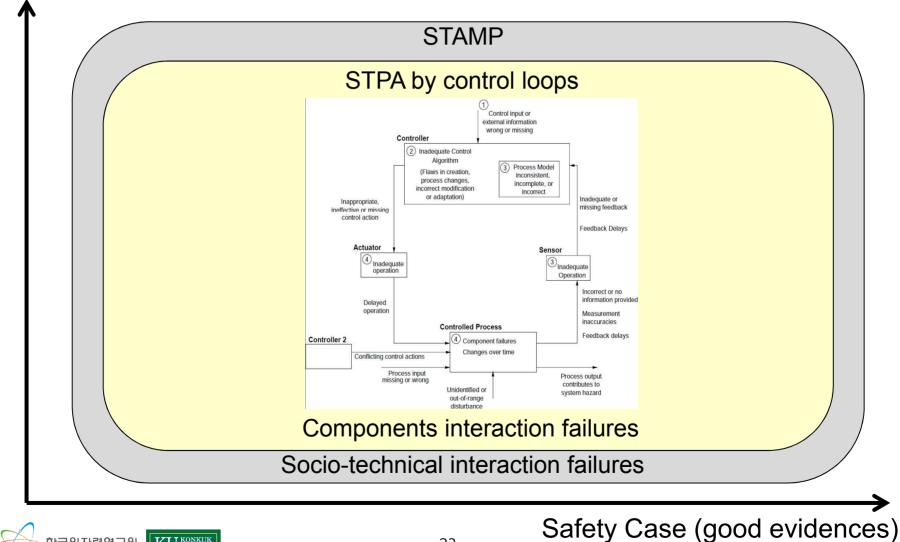


CONCLUSION

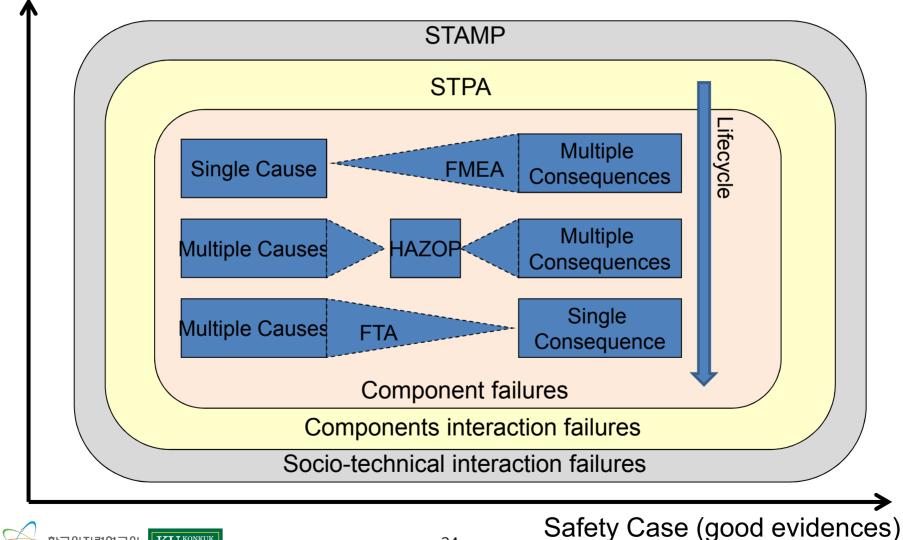
- STPA provides analysts with a systematic method to analyse hazards with a global view.
- However, development of safety control structures and identification of causal factors of hazards were still subjective, depending on the domain-knowledge of analyst.
- Future Works to be objective HA
 - Need an automatic STPA based on a process model of system
 - STPA based on a formal(NuSCR) model
 - Need to find an optimized framework for safety demonstration(STPA, Safety Case, and traditional causal-chain methods)


Discussion: Harmonized Dependability?

Discussion: A Harmonized Safety Analyses


Safety Maturity Model index (SMMi)

Discussion: A Harmonized Safety Analyses

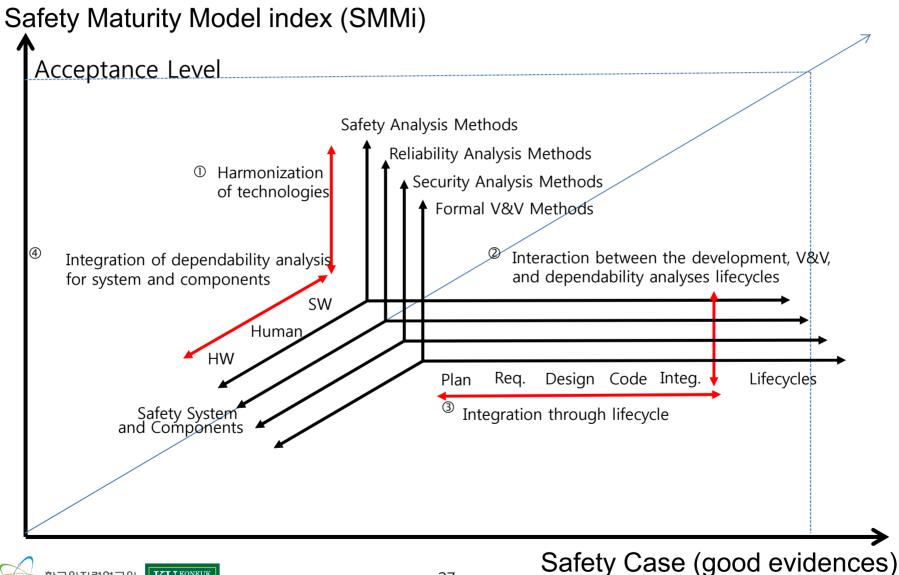

Safety Maturity Model index (SMMi)

Suggestion: A Harmonized Safety Analyses

Safety Maturity Model index (SMMi)

THANK YOU -

For a Safer World

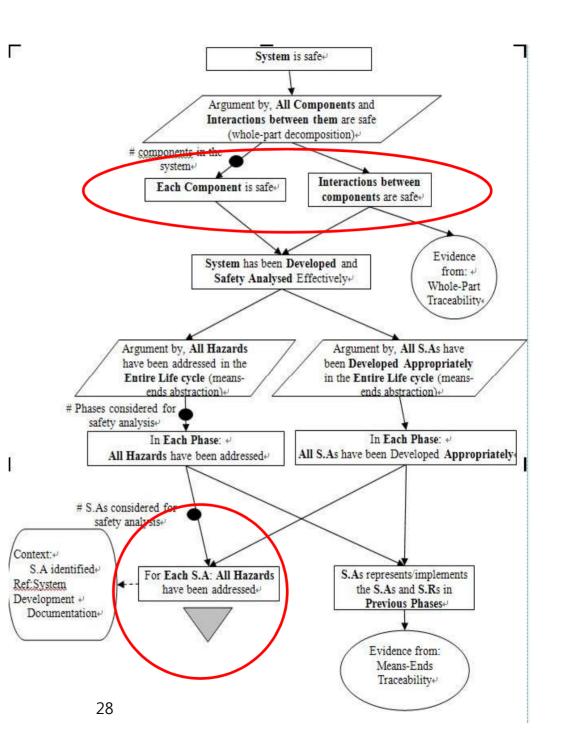


jslee@kaeri.re.kr

APPENDIX

Goal: A Harmonized Dependability Engineering?

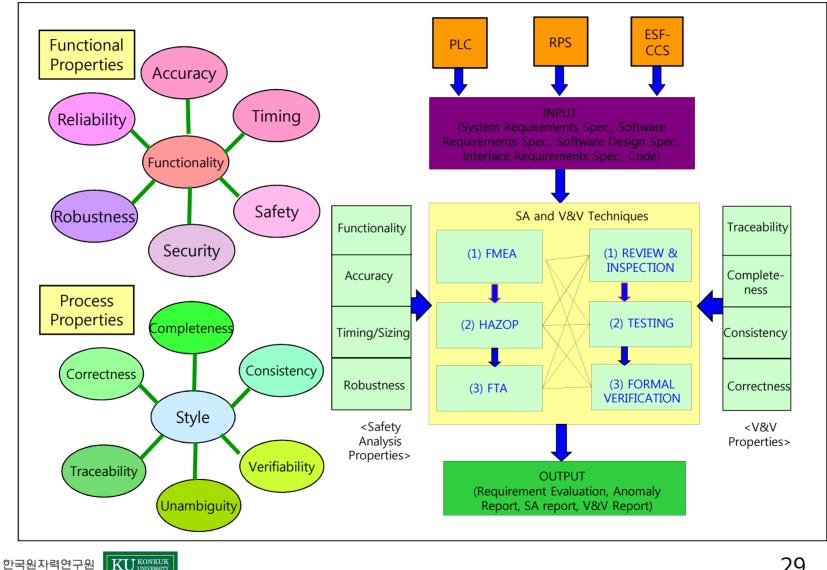
 한국원자력연구원
 KUUKONKUK


 Karea Atomic Energy Research Institute
 KUUKOVERSUTY

Discussion:

Building Safety Case through means-ends and whole-part traceability

Whole-Part Traceability – Traceability between S.As and safety analysis results belonging to different abstractions


Means-Ends Traceability – Traceability between S.As and safety analysis results belonging to different phases

Background:

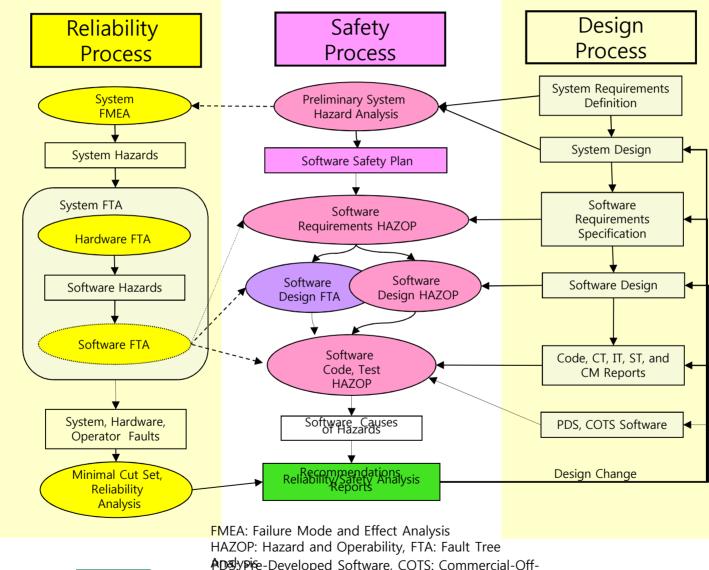
KAERI

Safety Analysis and V&V

Means-Ends and Whole-Part Safety Analysis

Safety Enforcement

Safety Verification


	Whole- Part	Environment System Human Hardware Software		KNICS Methods	
Level	Means- Ends	Safety Enforcement	Safety	PLC	RPS
1	Purposes, Safety constraints	Verification WHY	WHY	STPA	STPA
2	Abstract functions	WHY WHAT	Req. SA WHY	SW Req. HAZOP	SW Req. HAZOP
3	General functions	WHY WHAT H	DW Design WHY	SW Desigr HAZOP	SW Design FBD FTA
4	Physical processes	WHAT H	DW Code SA	SW Code HAZOP	SW Code FBD FTA
5	Physical form	HC	OW	Integration HAZOP	Integration HAZOP

SA: Safety Analysis, FBD: Function Block Diagram

Safety Engineering Processes

The-Shelf

