
Formal Verification of Process Communications in Operational
Flight Program for a Small-Scale Unmanned Helicopter

Dong-Ah Lee1, Junbeom Yoo2 and Doo-Hyun Kim3

1, 2 School of Computer Science and Engineering
Konkuk University

Seoul, Republic of Korea
e-mail: ldalove@konkuk.ac.kr (corresponding author), 2 jbyoo@konkuk.ac.kr

3 School of Internet and Multimedia Engineering

Konkuk University
Seoul, Republic of Korea

e-mail: 3 doohyun@konkuk.ac.kr

Abstract

Formal verification plays an important role in
demonstrating safety and correctness of safety-critical
systems such as airplanes and helicopters. Small-scale
unmanned helicopters have been increasingly developed
and deployed for various scientific, commercial and defense
applications. The HELISCOPE project is aiming to develop
an unmanned helicopter and its on-flight embedded
computing system for navigation and real-time transmission
of the motion video using wireless communication
schemes. This paper introduces our experience on the
formal verification of OFP (Operational Flight Program) in
the HELISCOPE project. The OFP provides real-time
controls with various sensors and actuators, and should be
sufficiently verified through formal verification techniques.
We focused on the formal verification of process
communications between four sensing processes and one
controller to access a critical section of shared memory area
mutually exclusively.

1 Introduction

HELISCOPE [1] project is to develop on-flight computing
system, embedded S/W and related services for unmanned
helicopter that shall be used for disaster response and
recovery. This project is aiming to develop an unmanned
helicopter and its on-flight embedded computing system for
navigation and real-time transmission of the motion video
using wireless communication schemes. OFP (Operational
Flight Program) [2] is developed as subpart of HELISCOPE
project. It is a control program which provides real-time
controls with various sensors and actuators equipped in the
helicopter.

This paper specified above processes and their
communications formally with Promela (Protocol Meta
Language), and performed formal verification (model
checking) using SPIN model checker [3]. First we are
focusing on the correct communications between 4 reading

processes and controller process through the shared
memory area. We also consider the correctness of
semaphore operation performed by monitor process in the
paper. The OFP has a real-time feature too. But some real-
time features of controller make us consider about other
formal verification techniques such as using Statecharts[4]
or UPPAAL[5]. We don’t care of such a timing constraint
in this paper.

In section 2, the OFP and SPIN are introduced briefly as
related works and in section 3, formalization of OFP in
Promela is described. In section 4, verification results with
a model formalized in section 3 are analyzed and in section
5, we will conclude.

2 Related works

2.1 Operational Flight Program
The OFP is developed as a subpart of the HELISCOPE
project and it is based on the well-known TMO scheme [6].
OFP support the unmanned helicopter’s navigation that is
done by commands on flight mode from GCS (Ground
Control System). Figure 1 shows an overview of
communications between processes in the OFP. We
described it from aspect of the formal verification, which
are pertinent to our discussion.

Operational Fight Program

Object Data Store

Controller

NAV Sensor

Monitor

OSD0

OSD1

OSD2

Reader0

Reader1

Reader2

Reader3

GPS Sensor

GCS Sensor

SwMPacket

NAVPacket

GPSPacket

GCSPacket

SwM

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
91 @ 2010 ICIUS

Figure 1: An overview of process
communications in the OFP

The organization of the OFP is as follows: Reader0 is a
process collecting real-time operational information
(SwMPacket) of the helicopter, while Reader1 reads
packets (NAVPacket) containing navigation information.
Reader2 read GPS data from a GPS equipped in the
helicopter, and Reader3 is a process collecting information
from GCS (Ground Control Station). Controller is a main
controller of the OFP, which reads data stored in a shared
memory area (‘Object Data Store’ in Figure 1) and controls
actuators equipped in the helicopter through SwMPacket
command. The OFP has another process Monitor besides
these five processes. It provides 4 reading processes with
semaphore facility.

Some of reader process accesses the same shared data area
to refer a data or write a data from sensors. And the
controller process accesses all shared data area to compute
next control data. For the same data in the shared area,
accessing by Controller or four reader processes (Reader0,
Reader1, Reader2 and Reader3) should be performed
mutually exclusively. Because if controller processes
accesses to read a data area when another process is writing
a data on same area, then the process which is reading it
will have a wrong value expecting and the controller
computes next value to move the helicopter with wrong
values. The OFP also should guarantee for correctness and
deadlock-freeness of semaphore facility, because the
readers should get a data which is a source for computation
of controller from sensors on time. If it is impossible to get
a data on time, then the controller cannot

2.2 Model Checking using SPIN
SPIN is a formal verification system that supports the
design and verification of distributed software systems.
SPIN models consist of three types of objects: process,
message channels and variables. Processes specify behavior,
channels and global variables define the environment in
which the processes run. Programs are implemented in
Promela language which is quite similar to an ordinary
programming language.

In 2001, NASA Ames Research Center in USA applies
formal analysis on a Space Craft Controller using SPIN [7].
They formally analyzed a multi-threaded plan execution
module. The plan execution module is one component of
NASA’s New Millennium Remote Agent [8], which is
artificial intelligence based spacecraft control system
architecture. The results are that they found 5 previously
undiscovered concurrency errors were identified. They
reported the results to development team, and according to
the team the effort had a major impact.

3 Formal verification using SPIN model checker

3.1 Overview
Our discussion of the Promela model of the OFP focuses on
communications between processes and semaphore

management. Figure 2 describes the communications
between 4 reading processes (ReaderN) and controller
process (Controller) through the global data area
(SharedVarN). It also shows semaphore operations on the 4
processes by monitor process (Monitor).

Monitor

Reader0

Reader1

Reader2

Reader3

SharedVar0

SharedVar1

SharedVar2

SharedVar3

SharedVar4

Controller

semaphore

reading /
writing

reading

Figure 2: A schema of Promela Model in SPIN

3.2 Formalization in Promela

3.2.1 Share variable & semaphores
The three ODS may have multiple variables. The variables
have variety types like character or double, and some of
them are a large array. But they are too heavy to be
represented in Promela. It may cause state explosion
problem in model checking, and our model doesn’t need to
know the detail information. Therefore we abstract a
property that is for checking whether it is stored or not from
the ODS. Figure 3 shows the abstracted data type of ODS in
Promela. It is defined as byte variable, and it can only have
a value from 0 to 255.

byte sharedVar0;
byte sharedVar1;
byte sharedVar2;
byte sharedVar3;
byte sharedVar4;

bool semaphore0 = false;
bool semaphore1 = false;
bool semaphore2 = false;
bool semaphore3 = false;

Figure 3: Definition of shared variable &
semaphore

In Figure 3, there are other variables for semaphore. These
variables are set to true when the monitor process sense
that a sensor sends a data. Reader processes which had been
waiting for setting semaphore to true can run to receive the
data, and they are set to false when a reader process
finish writing the data on shared data area.

3.2.2 Data access operation
All processes of OFP can access ODS using functions that
are defined the classical operations like
sharedVariable_set(), sharedvariable_get(), etc.. We
defined them as inlines (a stylized version of a macro) in
Promela. An inline definition works much like a
preprocessor macro, in the sense that it just defines a

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
92 @ 2010 ICIUS

replacement text for a symbolic name, possibly with
parameters.

inline accessGlobalData0() { … }
inline accessGlobalData1() { … }
inline accessGlobalData2() { … }
inline accessGlobalData3() { … }
inline accessGlobalData4() { … }

Figure 4: Functions for access to ODS

When processes try to access ODS calling the classical
operations, the operations use mutex variable. If a process
locks a mutex variable, then other process should waits to
lock the mutex variable until the mutex variable is unlocked.
We defined variables using bit data type for mutex variables
and lock and unlock operations using an inline. It is
represented in Figure 5.

bool mutex_0;
……
bool mutex_4;

inline mutex_lock(mutex) {
 atomic {
 if
 ::mutex == false ->
 mutex = true
 fi
 }
}
inline mutex_unlock(mutex) {
 atomic {
 if
 ::mutex == true ->
 mutex = false
 fi;
 }
}

Figure 5: Lock & unlock functions
with mutex variable

These inline functions, Figure 4 and Figure 5, don’t run
itself. They are only called by other processes like
Controller and Reader. Controller and Reader call
accessGlobalDataN(). accessGlobalDataN() calls the
mutex_lock() and unlock_mutex() operation to read or write
on global data area. In addition, atomic in Promela indicates
that the sequence is to be executed as one indivisible unit,
non-interleaved with other processes.

3.2.3 Sensors
Sensors, which generate or receive information, are main
devices to control the helicopter. But they are too complex
to implement in Promela, and hence we tried to find a
convenient way to represent them. Our solution is that the 4
sensors are defined as a process that can generate all data,
and moreover the process only generates a data identified
by reader process.

We defined an inline to simulate that sensors generate data
randomly. The model focuses on the communication
between processes, and so we modeled the sensors to do
every possible operation. None of sensor can send a
message to the system, and one or more sensors can send a
message at once. We tried to implements the operation
using random functions in Promela, but there is no
predefined random number generation function
unfortunately. So we defined another inline to work like
random functions (see Figures 6).

bit sensor[4];

inline Sensors()
{
 if
 ::skip -> sensor[0] = false
 ::skip -> sensor[0] = true
 fi;
 if
 ::skip -> sensor[1] = false
 ::skip -> sensor[1] = true
 fi;
 if
 ::skip -> sensor[2] = false
 ::skip -> sensor[2] = true
 fi;
 if
 ::skip -> sensor[3] = false
 ::skip -> sensor[3] = true
 fi
}

Figure 6: Sensor operation

3.2.4 Processes
Monitor

Monitor process in the OFP monitors the serial ports. If the
monitor senses a serial port that is sending data, then it
makes reader processes work to get the data from the serial
port.

A model in Promela does exactly same work with monitor
in OFP. First it checks serial ports. Then it makes Reader
processes works each time for checking serial ports. When
the monitor makes readers work it posts semaphore
variables. We decided to model semaphore variables and
functions as channels. Channels have some of the same
properties as them: A receiver should wait to receive a
message through a channel until it receives the message.
The posing is realized by the statement:

sema_ch0!true

monitor process has 4 channels connected with 4 Reader
processes. It checks data generated by the inline function
Sensors(). If a data is set to true, then monitor sends a
message to Reader that is supposed to receive the data
through channel. On the other hand, if the data isn’t set,
then it will skip sending a message and the Reader waits to
receive a data. We defined a channel as an asynchronous

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
93 @ 2010 ICIUS

with only one buffer. Only a data can be sent at once.
Figure 7 shows monitor process

proctype monitor
(chan sema_ch0,sema_ch1,
 sema_ch2, sema_ch3)
{
 do
 ::skip ->
 if
 ::sensor[0] == true ->
 sema_ch0!true
 ::sensor[0] == false ->
 skip
 fi;
 if
 …………
 fi;
 if
 …………
 fi;
 if
 …………
 fi;
 Sensors()
 od
}

Figure 7: Monitor process

Reader

There are 4 reader processes in the OFP. They read a data
sent from sensors through serial port and write the data on a
shared data area, ODS. Figure 8 is a part of one of reader
processes in Promela. A reader process has a channel
connected with monitor. The monitor senses a data, and it
sends a message for semaphore. reader waits the message
to receive data from a sensor. The waiting is realized by the
statement:

sema_ch?semaphoreN ->
This statement make the process be blocked. It runs when
monitor sends a data through same channel.

proctype reader3(chan sema_ch)
{
 do
 ::sema_ch?semaphore3 ->
 sensor[3] = false;
 if
 ::skip ->
 AccessGlobalData2();
 AccessGlobalData4()
 ::skip ->
 ……
 fi;
 semaphore3 = false
 od
}

Figure 8: reader3 process

After receiving a data from sensor and writing the data on
shared data area, reader process set the sensor and
semaphore to false. A meaning of setting sensor is that
the reader process finished receiving, and a meaning of
setting semaphore is that reader process finished running.

Basically, the other processes have similar procedure like
reader3. But they access data different order and times,
because each reader has different properties and it needs to
compute data received from sensors differently. For
example, reader0 accesses only sharedVar0, and reader1
and reader2 access sharedVar1 and sharedVar2. The
reader3, Figure 8, accesses sharedVar2, sharedVar3 and
sharedVar4. Here is a feature we are verifying that the
access to same variable between reader1~3. Each reader
process has specific order and times to access them.

Controller

The main controller of OFP controls a helicopter with a data
computed with the data stored by readers. It has a running
cycle and deadline to run in actual program. It is important
that the controller computes a control data in deadline,
because if a helicopter doesn’t change its flight mode or
flying direction on time, then it can be fall in dangerous.
But we don’t care of the cycle or deadline in this paper. We
only consider whether there is any errors or faults in
communication with readers.

proctype controller()
{
 do
 :: skip ->
 AccessGlobalData0();
 AccessGlobalData2();
 if
 ::skip->AccessGlobalData1()
 ……
 fi;
 ……
 od
}

Figure 9: Controller process

Figure 9 shows a part of controller modeled in Promela.
The controller may access every shared data area, ODS, to
compute next value for control a helicopter. We modeled
the controller without timing constraints, and hence this
process can run every situation it needs to run. It has very
complicated access order, and it accesses ODS many times.
Almost operations of access aren’t indicated in this paper.
But it is reflected a following of the OFP.

4 Verification and results

With the Promela model implemented in section 3.2, we
perform SPIN model checking against these three properties
below:

(1) The process monitor’s Semaphores on four reading
processes should function correctly.

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
94 @ 2010 ICIUS

(2) Two processes reader1, reader2 and reader3
should access the same global data mutually
exclusively.

(3) Reading process controller and four writing
processes should be mutually exclusive.

We performed the SPIN simulation as described in Figure
10 below in order to make confirm the correctness of our
modeling – Semaphore and shared variable accessing. The
calling procedure AccessGlobalDataN() in the simulation
shows communications between the global shared data area
and four reading processes. It is a model of mutex for the
shared data variables (mutex_0, mutex_1, mutex_2,
mutex_3 and mutex_4). Messages passing out of monitor in
the simulation also simulate the Semaphore operations
provided by the Monitor process too. After guaranteeing its
correctness, we performed the SPIN model checking
against the three properties.

Figure 10: A screen-dump of SPIN simulation

The property (1) is refined into LTL property below:
[] (sensor_send -> <> read_recv)

#define sensor_send sensor[0] == true

#deinfe reader_recv reader0.sema == true

This property states that “in all stats, if sensor_send
holds, then eventually either read_recv will hold”. If a
sensor tries to send a data to the system, Monitor senses it
first. And the Monitor posts a semaphore that makes that
Reader process receives a data. The Monitor manages 4
Reader process with posting 4 semaphores like that. In this
procedure, we verified whether the Monitor can manage the
4 Readers correctly. Monitor should post correct semaphore
and Reader should run when its semaphore is posted.

Figure 11 shows the verification result with LTL property.
There is LTL formula on top of window, and a predicates of
sensor_send and reader_recv on Symbol
Definitions section. We verified it with three properties
more. The three properties are about sensor[1]~[3]
and reader1~3. The results of four properties are all
satisfied. We confirmed that the process monitor manage
four reader processes correctly.

Figure 11: Verification result with LTL property

We defined a process to verify properties (2) and (3) in
Figure 12. The meaning that a mutex variable becomes over
1 is over 1 processes access a critical section using the
mutex variable. It causes a problem that the processes write
a data on shared data area at the same time, or the processes
refer a wrong data. This process is defined active,
because it always runs to check the variable.

active proctype assert_monitor()
{
 assert((mutex_0 != 2) &&
 (mutex_1 != 2)&&(mutex_2 != 2) &&
 (mutex_3 != 2)&&(mutex_4 != 2))
}

Figure 12: Process to verify mutexes

Figure 13: Verification result with assert

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
95 @ 2010 ICIUS

5 Conclusion

In this paper we apply formal verification on OFP using
model checker SPIN. We focused on verifying process
communications between four sensing processes and one
controller to access a critical section of shared memory area
mutually exclusively. And we also verified that
managements of processes with semaphore technique.
Results of verification are that there is no defect or fault
about accessing shared data area and managing readers with
semaphore.

It is worth to mentioning that we modeled the shared
memory area (i.e. mutex) in the OFP with calling
procedures. The Spin’s strong merit – modeling
communication protocols between independent processes
through channels– made us model it in the way. It however
may cause a modeling fault when combining with the other
part of the OFP, Controller process. The process has strict
timing scheduling and restrictions, so the difference
between accessing to shared data area and calling a
procedure might cause slightly different behavior of
Controller. We are currently focusing on analyzing the
timing-related behavior of Controller, and it may change the
current model of the OFP. The timing related features of
Controller, as we mentioned, may help us change formal
verification techniques and tools, i.e. UPPAAL with timed
automata model or Statecharts with hierarchical state
machine models.

Acknowledgement

This research was supported by the MKE(Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised
by the NIPA(National IT Industry Promotion Agency).
(NIPA-2010-(C1090-1031-0003), (NIPA-2010-(C1090-
0903-0004))

References

[1] D. H. Kim, K. Nodir, C.H. Chang, J.G.
Kim ”HELISCOPE Project: Research Goal and
Survey on Related Technologies”, In the Proceeding
of 12th IEEE International Symposium on Object /
Component / Service-Oriented Real-Time Distributed
Computing (ISORC), pp.112-118, Tokyo, 2009.

[2] S. G. Kim, S.H. Song, C. H. Chang, D. H. Kim, S.
Hew, J. G. Kim “Design and implementation of an
Operational Flight Program for an Unmanned
Helicopter FCC Based on the TMO Scheme”,
Proceedings of the 7th IFIP WG 10.2 International
Workshop on Software Technologies for Embedded
and Ubiquitous Systems(SEUS), pp.1-11, Newport
Beach, CA, USA, 2009.

[3] Holzmann, G. J. "The Model Checker SPIN", IEEE
Transactions on Software Engineering, Vol. 23, No. 5,
May 1997.

[4] D. Harel., “On Visual Formalism,” Communication of
ACM, Vo.31, 5, pp.514-530, 1988.

[5] UPPAAL, http://www.uppaal.com

[6] Kim, K.H., Kopetz, H. “A Real-Time Object Model
RTO.k and an Experimental Investigation of Its
Potentials”, In: 18th IEEE Computer Software &
Applications Conference, pp. 392–402, Los Alamitos,
1994

[7] Havelund, K. Lowry, M. Penix, J., “Formal analysis of
a space-craft controller using SPIN”, Software
Engineering, IEEE Transactions on, Vol.27, 8, pp. 749
– 765, 2001

[8] B. Pell, E. Gat, R. Keesing, N. Muscettola, and B.
Smith, “Plan Execution for Autonomous Spacecraft”,
In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 1234-1239, Japan, 1997

ICIUS 2010
Nov 3-5, 2010
Bali, Indonesia

ICIUS-2010-0121

ISBN 978-979-16955-1-0
96 @ 2010 ICIUS

