
international journal of critical infrastructure protection 43 (2023) 100642

A
1

Contents lists available at ScienceDirect

International Journal of Critical Infrastructure Protection

journal homepage: www.elsevier.com/locate/ijcip

A systematic co-engineering of safety and security analysis in requirements
engineering process
Sejin Jung a, Junbeom Yoo b,∗,1, Sam Malek c

a Chinju National University of Education, Republic of Korea
b Konkuk University, Republic of Korea
c University of California, Irvine, United States of America

A R T I C L E I N F O

Keywords:
Co-engineering
Safety analysis
Security analysis
Goal-tree analysis
Requirements engineering
Safety-critical systems

A B S T R A C T

Co-engineering safety and security is increasingly important in safety-critical systems as more diverse interact-
ing functions are implemented in software. Many studies have tried to perform safety and security analyses in
unified or in parallel. While the unified approach requires more complex analysis with new delicate methods,
the parallel needs further improvement on additional integration activity for harmonizing safety and security
analyses results. This paper tries to improve the harmonization activity seamlessly and systematically in typical
requirements engineering process for safety-critical systems. It encompasses both requirements elicitation and
analysis as well as safety and security analyses, regardless of which analysis techniques are used. The paper
suggests performing an appropriate safety analysis first to derive safety requirements as summary information.
It then performs goal-tree analysis to refine the high-level safety requirements into lower-level ones, from
which any security analysis can work on to derive security requirements. Another goal-tree analysis then tries
to refine the high-level security requirements into specific functional ones too, and it ends the analysis activity
in a cycle of requirements engineering process. The sequence of safety analysis, goal-tree refinement, security
analysis and another goal-tree refinement is seamlessly iterated in the process of requirements engineering,
where any conflict of requirements will have an opportunity to be resolved. Our case study of a simplified
UAV example uses STPA and STRIDE techniques for safety and security analysis respectively, and shows that
the proposed approach is fully applicable up to industrial cases.
1. Introduction

Co-engineering safety and security [1,2] is becoming increasingly
important to even traditional safety-critical systems, as they are try-
ing to integrate security provisions into systems and architectures,
which are fundamentally designed for safety, to avoid potential con-
flicts between safety and security provisions. It also aims to aid the
identification and the leveraging of the potential synergies between
safety and security. For nuclear power plants’ I&C (Instrumentation
and Control) systems, the safety and security coordinating frame-
work IEC 62859:2016 [3] was proposed, based on functional safety
standards such as IEC 61508:2010 [4], IEC 60880:2006 [5] and IEC
62138:2018 [6]. Many studies in the field of CPS (Cyber Physical Sys-
tem) [7], SoS (System of Systems) [8] and control systems [9] also have
tried to co-engineering safety and security analysis in combination, i.e.,
in unified or in parallel, as well surveyed in [10].

The unified approach proposes joint analysis of safety and security
and their interdependencies in one method, but requires more complex

∗ Correspondence to: Konkuk University, Republic of Korea.
E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

1 He was a visiting scholar to University of California, Irvine, USA.

analysis with new delicate notations. The parallel, on the other hand,
performs familiar safety and security analyses individually as usual,
but requires additional integration activity for harmonizing safety and
security analyses results, which is often expected with further improve-
ment [10]. The latter might reduce the insight of the analysis leading
to unbalanced results, while the former provides more rigorous results,
with better understanding of potential conflicts between safety and
security [11].

Traditional safety-critical systems such as nuclear power plants, air-
planes, vehicles and trains still have required more strict and thorough
demonstration of safety in accordance with functional safety standards
(e.g., IEC 60880, ISO 26262, DO 178B/C, EN 50128) for commercial
operation. Engineers still find it comfortable to derive security require-
ments additionally (i.e., in parallel) and analyze the interrelationship
between safety and security while maintaining the safety life-cycle
of functional safety standards, as investigated by [12]. This paper
aims to improve the harmonization activity of safety and security in
vailable online 18 November 2023
874-5482/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijcip.2023.100642
Received 26 May 2023; Received in revised form 10 September 2023; Accepted 16
 November 2023

https://www.elsevier.com/locate/ijcip
http://www.elsevier.com/locate/ijcip
mailto:jbyoo@konkuk.ac.kr
https://doi.org/10.1016/j.ijcip.2023.100642
https://doi.org/10.1016/j.ijcip.2023.100642

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.

t
e
y
m
‘
S
a
e

a
w
y
r
q
t
n
a
p
s
s
t
e
m
i
q
a
a
r

a
r
i
T
r
S
a
S
c
t
w

2

a
S
p
b
A
c

v
D

A

s
c
E
T
A
S
t
m

a
A
t
3
b
p
S
r
o
n
o
s
w
c
b
c
S
i
c
w

s
n
L
e
m
l
t
e
t
s
w
i

3

3

t
P
c
n

U
c

‘
t

typical requirements engineering process for safety-critical systems,
while keeping using typical software development processes based
on functional safety standards and HARA (Hazard Analysis and Risk
Assessment) techniques. It encompasses both requirements engineer-
ing (i.e., elicitation and analysis) as well as hazard and vulnerability
analyses, regardless of which analysis techniques are used.

This paper tries to perform safety and security analysis together,
i.e., in parallel, without introducing new notations but considering
heir interdpendencies seamlessly in a typical process of requirements
ngineering [13] for safety-critical systems. At the requirements anal-
sis phase in software development life-cycles (SDLC) [14], require-
ents engineering activities such as requirements ‘elicitation,’ ‘analysis,’
specification’ and ‘validation’ are performed iteratively up to finish an
RS (Software Requirements Specification) [15]. We try to integrate
ny safety and security analyses into the activities of requirements
ngineering, seamlessly and systematically.

This paper suggests performing an appropriate safety analysis first
s part of the ‘elicitation’ to derive safety requirements in accordance
ith functional safety standards. It then performs ‘Goal-Tree Anal-
sis’ [16] as an ‘analysis’ technique to refine the high-level safety
equirements into lower-level ones. From the specific functional re-
uirements for safety, any security analysis technique can work on
o derive security requirements. Most security analysis techniques are
ot easy to link to safety analysis results directly, because the security
nalysis often requires more detailed information than safety analysis
roduces. Another goal-tree analysis then tries to refine the high-level
ecurity requirements into specific functional ones. The sequence of
afety analysis, goal-tree refinement, security analysis and another goal-
ree refinement is seamlessly iterated in the process of requirements
ngineering. Of course, the refined functional requirements for security
ay cause a conflict with the functional ones for safety. However,

t will have a chance to be resolved in the iterative process of re-
uirements engineering. Requirements also typically keep changing
nd affecting the safety and security requirements analyzed so far,
nd it will also have to be resolved naturally in the cyclic process of
equirements engineering, as we are currently working on now.

This paper performs a case study with a simplified UAV example,
pplying STPA and STRIDE as safety and security analysis techniques,
espectively. It shows that the proposed approach is fully applicable to
ndustrial cases with various safety and security analysis techniques.
he remainder of the paper is organized as follows. Section 2 summa-
izes the related work trying to analyze safety and security together.
ection 3 overviews the STPA analysis technique, the goal-tree analysis
nd the STRIDE security model to aid understanding the case study.
ection 4 describes the overall co-engineering process of safety and se-
urity analysis in requirements engineering process. Section 5 presents
he case study with a simplified UAV example, and the paper concludes
ith future work in Section 6.

. Related work

Many studies have addressed the integration of safety and security
nalysis for various application domains such as CPS (Cyber Physical
ystem) [7], SoS (System of Systems) [8] and control systems [9]. Com-
rehensive reviews on safety and security analysis techniques that can
e integrated in unified or in parallel are also well provided by [17,18].
systematic literature review [10] classifies the safety and security

o-analysis work based on their focus, such as ‘Combined safety and
security approach’ vs. ‘Security informed safety approach’ and ‘Parallel’
s. ‘Unified.’ Researches are also classified by the SDLC (Software
evelopment Life-Cycle) stage that they address, such as ‘RE only,’ ‘HA

and TA only ’ and ‘RE, HA and TA.2’ The co-engineering of safety and

2 RE: Requirements Engineering, HA: Hazard Analysis (Safety), TA: Threat
nalysis (Security)
2

security in requirement engineering process for safety-critical systems,
which this paper proposes, fits to the category of ‘‘Combined safety
and security approach in parallel encompassing requirements engineering,
hazard analysis and threat analysis altogether ’’ technique.

From the perspective of traditional safety-critical systems, studies
can also be categorized based on two accident models [19] such as
‘chain-of-event ’ and ‘STAMP (Systems-Theoretic Accident Model and Pro-
cesses).’ Based on the ‘chain-of-event ’ accident model, many traditional
afety analysis techniques [20] have been extended to new ones which
an also analyze security. FMVEA (Failure Mode, Vulnerabilities and
ffects Analysis) [21], SeCFT (Security Enhanced Component Fault
rees) [22], SAHARA (A Security-Aware Hazard Analysis and Risk
nalysis) [23], CHASSIS (Combined Harm Assessment of Safety and
ecurity for Information Systems) [24] and many others [25,26] all
ry to deal with security as well as safety through one new integrated
odel.

Several studies are also based on the ‘STAMP’ accident model [27]
nd its safety analysis technique, STPA (Systems-Theoretic Process
nalysis) [28]. While STPA-Sec [29] is a widely-used security analysis

echnique which has shown a number of successful applications [30–
2], it only analyzes security features. It does not extend the STPA-
ased safety analysis up to security, but adopts a similar analysis
rocess from STPA to analyze security. [33] proposes a GSN (Goal-
tructuring Notation) pattern to derive integrated safety and security
equirements. [34] builds a goal-tree which tries to connect to each
ther, i.e., all models analyzing safety and security individually. It does
ot perform the goal-tree analysis like this paper but uses the notation
f goal-trees. [35] tries to integrate STPA with ‘Six Step Model’ for
ecurity analysis. [36] proposes an annotated control graph to cope
ith safety and security together. On the other hand, [37] presents a

ombined analysis method for safety and security called STPA-SafeSec
ased on STPA and STPA-Sec, and [38] also proposes an approach
ombining STPA-Sec and FMVEA. [39] tries to combine STPA and
ecure Tropos in parallel while trying to weave two analyses results
n sequence. We use STPA and STRIDE analyses techniques in the
ase study, but any familiar analysis technique can be used in parallel
ithout interfering others in cyclic requirements engineering process.

Some studies also try to extend security analysis techniques into
afety as well surveyed in [10]. [40] extends a TVRA (Threat Vul-
erability and Risk Assessment) technique with SIL (Safety Integrity
evel) from the functional safety standard IEC 61508. [41] tries to
xtend the NIST 800–30 methodology to consider safety aspects. While
ost approaches try to use new notations and models to aid ana-

yzing security features as well as safety, this paper tries to achieve
he same goal without introducing new notations nor extending the
xisting ones. We can also incorporate any safety and security analysis
echniques in familiar requirements engineering processes. The case
tudy in the paper uses STPA for safety analysis and STRIDE for security
ithout extension, and of course any other analysis techniques can be

ncorporated, too.

. Background

.1. STPA

STPA (Systems-Theoretic Process Analysis) [28] is a safety analysis
echnique based on the STAMP (Systems-Theoretic Accident Model and
rocesses) accident model [27]. The system is viewed as a hierarchi-
al structure that higher-level components control lower-level compo-
ents which feed back to higher ones according to the ‘control struc-
ture’ model. The STPA focuses on identifying hazardous controls, i.e.,

CAs (Unsafe Control Actions) between the controllers and controlled
omponents as described in ⟨Fig. 1⟩.

UCAs are classified in 4 types such as ‘not providing causes hazard,’
providing causes hazard,’ ‘too early, too late, or out of order,’ and ‘stopped
oo soon or applied too long.’ Safety analysts try to identify control

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
Fig. 1. The typical analysis process of STPA.
Fig. 2. A goal-tree analysis in requirement engineering process.
commands which can result in UCA, and then analyze L/CS (Loss/Cause
Scenarios) on the control structure, which can contribute to the losses.
Safety experts have to look them closely one by one to see if they can
cause real accidents or not. Safety requirements can be formulated from
L/CS, but it is out of the scope of the STPA analysis itself.

3.2. Goal-tree analysis in requirements engineering

Requirements engineering [13] is a structured set of activities to
identify requirements and organize them into SRS (Software Require-
ments Specification) [15]. It includes ‘requirements elicitation’ from
stakeholders to discover user requirements and ‘requirements analy-
sis’ with requirements models to specify system requirements which
are required to satisfy the user requirements. It also encompasses
‘requirements specification and validation’ to organize all types of re-
quirements (e.g., user, system, functional, non-functional and quality
requirements) into a SRS and check their validity and C&C (Complete-
ness and Consistency). All activities are iterated continuously until a
desired level of SRS is completed, depending on the SDLC (Software
Development Life-Cycle) [14] used, as described on the right side of
⟨Fig. 2⟩.

A goal-tree is a general form of mind mapping to help visually
to break down a large high-level goal into smaller sub-goals. Goal-
oriented requirements engineering [16,42] uses it to transform high-
level user requirements (goals) into low-level functional requirements
as depicted in ⟨Fig. 2⟩. It corresponds to the ‘Req. Analysis’ activity in
the requirements engineering process.

The goal at the business level in a goal-tree is derived from the ‘Req.
Elicitation’ activity and often includes quality attributes such as safety
and security [43]. Engineers then keep refining the goal into lower-level
goals subsequently. The refined goals at the interaction level can have
3

scenarios (Sc), like ‘Use-Case’ in UML, which are composed of specific
functional requirements at the internal level.

This paper performs the goal-tree analysis twice in a cycle, for safety
requirements and security requirements, respectively. It starts the goal-
tree analysis with the safety requirements formulated from the results of
safety analysis. Upon the specific functional requirements at the inter-
nal level, this paper also suggests applying security analysis techniques
to analyze threats and derive security requirements. Another goal-tree
analysis starts with the security requirements to refine them into more
specific functional requirements to satisfy the security requirements.

3.3. STRIDE threat model

STRIDE [44] is a model for identifying computer security threats
by Microsoft. It provides 6 categories of security threats, such as
spoofing, tampering, repudiation, information disclosure, denial of service
and elevation of privilege. The STRIDE is used to help reason and find
threats to a system. It can be also used in conjunction with a model of
the target system, e.g., control structures in STPA. It is often used by
security experts to help answer questions [45] such as

• How can an attacker change the authentication data?
• What is the impact if an attacker can read the user profile data?
• What happens if access is denied to the user profile database?
As a widely-used threat model. STRIDE is often integrated with

safety analysis techniques like FMEA as proposed by [21,23,25]. [46,
47] also presents a threat modeling framework for CPS using STRIDE,
considering system security at the component level. The case study
in the paper uses the STRIDE model as a security analysis technique,
which are widely-used for general application, but any other technique
can also be used without modification.

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
Fig. 3. An overview of the co-engineering process of safety and security analysis.
4. The co-engineering process of safety and security analysis

The co-engineering process of analyzing safety and security together
is naturally embedded in the ‘requirements engineering process’ of a
‘software development life-cycle’ as depicted in ⟨Fig. 3⟩. It does not re-
quire any new notation or technique other than the safety and security
analysis techniques, which have been widely used and familiar with. It
suggests the sequence of requirements elicitation, safety analysis, goal-
tree refinement, security analysis and another goal-tree refinement in
cyclic iterations of requirements engineering process within a software
development life-cycle of safety-critical systems.

• (1) Requirements Elicitation It is the typical first step in re-
quirements engineering process. It tries to elicit, i.e., identify or
discovery, from stakeholders high-level ‘user requirements’ through
appropriate elicitation techniques such as requirements work-
shop, brainstorming, role playing, survey, interview, prototyping
and etc. We do not assume that particular techniques are used, but
assume that ‘requirements negotiation’ [48] results in an organized
set of user requirements.

• (2) Safety Analysis Any ‘safety analysis’ technique is applicable
to the ‘user requirements’ and yields a number of valuable analytic
results that both safety analysts and system engineers need to take
a closer look at.

– Formulating Safety Requirements The co-engineering pro-
cess first suggests that the vast safety analysis results be
formulated into a more refined form, ‘safety requirements.’ It
is the same way that safety requirements are derived from
HARA (Hazard Analysis and Risk Assessment) in functional
safety standards. It prevents security analysts from being
caught up in a lot of unfeasible security issues that are far
from the actual implementation of the system, later but soon
in the co-engineering process.

The safety requirements act as ‘summary information’ for system
engineers to achieve to improve the system safety through im-
plementing required functionalities. The specific functional, i.e.,
system requirements, will be derived at the next step through
goal-tree analysis.

• (3) Goal-Tree Analysis The ‘goal-tree analysis’ then refines the
user-level safety requirements into lower-level ‘system require-
ments,’ which can achieve the safety requirements in the system
4

under consideration. While requirement models such as DFD
(Data Flow Diagram) and Use-Cases are typically used to aid
refining, they are limited to refining functional requirements. The
‘goal-tree analysis’ is more effective in refining both functional and
non-functional (e.g., safety and security) requirements together at
the user-level. The goal-tree analysis in the co-engineering process
starts from the safety requirements formulated well and keeps
refining into lower-level functional requirements at the system
level. These specific functional requirements serve as a stepping
stone to connect the safety analysis to security analysis performed
next.

• (4) Security Analysis From the refined functional requirements
for safety at the system level, security experts are finally able
to encounter valuable information to predict the use of a draft
software architecture, network protocols, specific hardware and
software, or safety solutions in consideration. Security experts
now can perform any ‘security analysis’ based on the specific in-
formation. They will identify some functional requirements called
‘security concerns’ which might degrade the system security, even
if they were devised to improve the system’s safety.

– Formulating Security Requirements Security experts can
derive more specific threat scenarios and formulate ‘security
requirements’ to resolve the threat scenarios. The security
requirements now are supposed to improve the system se-
curity while preserving the system safety, simultaneously.

• (5) Goal-Tree Analysis Another goal-tree analysis starts from the
security requirements and keeps refining into detailed functional
requirements to achieve the security ones. Security analysts as
well as system architects often get useful hints from ‘security
tactics’ [49] to achieve the security goals. The refined functional
requirements for security might cause a conflict with the ones for
safety, but it will be analyzed in the next step.

• (6) Coordinating Safety and Security The entire process is
conducted through cooperation between safety and security ex-
perts. Iterations of requirements modification, refinement and
re-analysis of safety and security are always accompanied by typi-
cal requirements engineering. A number of security requirements
will be derived and may have negative impacts on other safety
requirements that they have not analyzed with. Some functional
requirements for safety may conflict with some functional re-
quirements for security, and vice versa. A functional requirement

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
Fig. 4. A high-level view of the control structure for the UAV example.
Fig. 5. An overview of the case study with STPA and STRIDE.
for security also may cause a conflict with other high-level safety
requirements from which that was not derived. A systematic
analysis on the ‘coordinating safety and security ’ will be required
at the requirements specification and validation steps during the
requirements engineering process. A more detailed consideration
on the coordination comes later, but we are working on it now
and a sketch for the coordination will be introduced.

5. The case study: A simplified UAV

5.1. An overview of the case study

The case study aims to demonstrate how the co-engineering process
works seamlessly in the typical process of requirements engineering
with widely-used safety and security analysis techniques. STPA is used
for safety analysis technique and STRIDE for security. The target system
is a simplified UAV (Unmanned Aerial Vehicle) for fire surveillance,
which our previous work [30] had used to derive safety requirements
from STPA and security requirements from STPA-Sec, respectively. We
had expected the two techniques to share a lot of analytical information
and processes, but few other than ‘control structures’ roughly shown in
5

⟨Fig. 4⟩. It motivated us to propose the co-engineering process for safety
and security analysis in the paper.

As a typical UAV, the example includes 4 participants such as an
operator, a GCS (Ground Control System), a vision controller, and
drone(s), as shown in ⟨Fig. 4⟩. (More refined ones were used for the
STPA analysis [30].) There are 4 basic elements attached to control ac-
tions and feedbacks such as ‘control command’ and ‘flight status.’ On the
left, there are three elements outside the system under consideration.
They can send control actions to the target system.

⟨Fig. 5⟩ overviews the whole process of the case study, in accor-
dance with the proposed co-engineering process depicted in ⟨Fig. 3⟩.
STPA and the STRIDE analysis are used and it describes the security
analysis steps in more detail to aid understanding. The goal-tree analy-
sis is also used to refine the high-level safety and security requirements
into low-level functional requirements in requirements engineering pro-
cess. The figure simplifies the repeated application of goal-tree analysis
in sequence for convenience.

The case study begins by assuming that the ‘(1) Requirements Elic-
itation’ and ‘(2) Safety Analysis’ had been completed by the previous
work. It had resulted in 47 UCA (Unsafe Control Actions), 301 L/CS
(Loss/Cause Scenarios), 22 safety requirements and 25 security require-
ments. While the details of the analyses are out of the scope of the

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
Fig. 6. An overview of the case study starting from the safety requirement #20.
paper, the case study shows how one safety requirement (No. 20) can be
refined into specific functional requirements through a goal-tree analy-
sis. And seamlessly a STRIDE analysis results in 4 security requirements,
which are expected to improve safety and security simultaneously.
Our previous work with STPA-Sec had identified only a half. It also
refines the security requirements into specific functional requirements
by performing another round of goal-tree analysis, and it will help us
get insights into our future work, ‘(6) Coordinating Safety and Security ’.

5.2. The case study results

The case study conducts the 5 steps summarized in ⟨Fig. 5⟩ in order.
The first two steps had been completed in our previous work, which
resulted in 47 UCA, 301 L/CS, 22 safety requirements and 25 security
6

requirements. The case study used some of the results and shows how
one safety requirement (No. 20) is refined and analyzed to derive 4
security requirements (No. 20 ∼ No. 23) and their specific functional
requirements, seamlessly in the process of requirements engineering, as
shown in ⟨Fig. 6⟩.

(1) Requirements Elicitation We assume completion.

(2) Safety Analysis We assume that the second step was also com-
pleted. The STPA analysis was performed and all safety requirements
were derived. Among the 22 safety requirements and associated UCAs
and L/CS, the case study chose the safety requirement #20 to derive
related security requirements through the proposed co-engineering pro-
cess. In detail, UCA #9 and L/CS #67 are concerned with deriving the SR
#20, as described in the table below. The upper part of ⟨Fig. 6⟩ shows

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.

p

w
t
o
t
b
⟨

t
r
1
a
s
c
i
m

#
w
i
i
u
i

r
f
1
f
S
1
(
i
s
t
t

E
s
p
s
c

i
r
a
#
(
t
(

the safety requirement (SR #20) starting the whole co-engineering
rocess.

UCA #9 The Pilot entered a GPS coordinate within the
no-flight area and switched to GPS mode.

L/CS #67 The display in GCS did not output that the
entered coordinates were within no-flight
areas, so the pilot switched to GPS mode and
moved the UAV.

SR #20 The GCS shall provide the capability to
represent the no-flight zone.

(3) Goal-Tree Analysis Starting from the safety requirement (SR #20),
e conduct the goal-tree analysis to refine it into 4 subsequent func-
ional requirements as depicted in the triangle tree at the upper part
f ⟨Fig. 6⟩. It is a typical requirements analysis activity that has nothing
o do with specific safety analysis techniques. They are considered to
e the functional requirements at the interaction and internal levels in
Fig. 2⟩, and will be used to realize the safety requirement.

FR #20-1 The GCS displays information of no-flight zone
on the screen in real-time.

FR #20-2 The GCS checks (acquires) no-flight zone
information in real-time.

FR #20-1-1 Internal Storage (Cache) capable of real-time
reaction is used.

FR #20-2-1 It accesses the Public API provided by
aviation-related government agencies in
real-time.

(4) Security Analysis Security experts (actually, graduate students in
he case study) identify two security concerns in the refined functional
equirements for safety. The use of internal storage like cache (FR #20-
-1) and public APIs (FR #20-2-1) may provide the cause of security
ttacks. At this point, security experts are able to notice possible
ecurity threats which could degrade the security of the system under
onsideration. For each security concern, security experts now try to
dentify possible and specific security threats with support of threat
odels. The followings are the result of the STRIDE model’s help.

ST #20-1-1-1 Security threat exists in the use of cache.
(Repudiation, Information Disclosure)

ST #20-2-1-1 Security threat exists in the public API access.
(Tampering)

For the functional requirement (FR #20-1-1), security threat (ST
20-1-1-1) is anticipated as the system is going to use a cache storage
hich could suffer from the attacks in the categories of repudiation and
nformation disclosure. On the other hand, security threat (ST #20-2-1-1)
n the category of tampering was identified for (FR #20-2-1), since the
se of public APIs on the cloud network may cause the no-flight-zone
nformation to be intercepted.

The last step is to formulate security requirements, which can
educe, mitigate, or prevent the security threats. The security experts
ormulate 2 security requirements against each security threat (ST #20-
-1-1) and (ST #20-2-1-1), respectively. The two security requirements
or (ST #20-1-1-1) were not devised from our previous work with
TPA-Sec. Since the corresponding security threat scenario (ST #20-
-1-1) was only derivable from the specific functional requirements
FR #20-1-1) and (FR #20-1), which the goal-tree analysis refined and
dentified. These four security requirements all aim to improve the
ystem’s security, even if the safety requirement (SR #20) could degrade
he system security during its subsequent implementation to improve
7

he system safety.
SeR #20 The GCS shall be able to allow only authorized
access on internal storage and shall log the
uses. (R,I)

SeR #21 The GCS shall be able to encrypt user-interface
data such as no-flight zones in internal storage.
(R,I)

SeR #22 The GCS shall be able to identify malicious
forgery/modulation of flight restriction zone
information.(T)

SeR #23 No-flight zone information on the GCS shall be
set to be accessible only to authorized users.(T)

(5) Goal-Tree Analysis Another round of goal-tree analysis now starts
from the security requirements to derive specific functional require-
ments needed to achieve the security goals. The case study introduces
the refinement of two security requirements due to the space con-
straints. For the security requirement (SeR #21), 3 and 4 functional
requirements are refined subsequently. As the security requirement
requires encryption for the no-flight zone information stored in an
internal storage, specific requirements for the data encryption (FR-se
#21-1) and decryption (FR-se #21-2) were refined. A 64 bits DES (Data
ncryption Standard) is also chosen as the encryption algorithm (FR-
e #21-1-1, FR-se #21-1-2). The DES-based encryption uses a unique
rivate key for each user (FR-se #21-1-2). It led us to derive (FR-
e #21-3) that varies accessibility to internal data according to user
lassification and subsequent ones (FR-se #21-3-1, FR-se #21-3-2).

FR-se #21-1 The GCS encrypts the NFZ data before storing
in cache.

FR-se #21-2 The GCS decrypts the NFZ data after reading
from cache.

FR-se #21-3 Various GCS users have different accessibility
to data.

FR-se #21-1-1 Encryption uses a 64 bits DES-based algorithm.
FR-se #21-1-2 Private encryption keys are used.
FR-se #21-2-1 Decryption uses a 64 bits DES-based algorithm.
FR-se #21-3-1 The GCS users are Admin, Senior, User, and

Trainer.
FR-se #21-3-2 All GCS users have predefined accessibilities to

all internal data.

On the other hand, the security requirement(SeR #22) is refined
n to 2 and 3 functional requirements subsequently. As the security
equirement requires the GCS to detect malicious attacks on the API
nd data, specific requirements for detecting attacks on the API (FR-se
22-1, FR-se #22-2) are refined. More specific functional requirements
FR-se #22-1-1 ∼ 3) are also derived based on the security detection
actics [49] such as ‘detect message delay ’ and ‘detect service denial
DoS).’

FR-se #22-1 The GCS keeps track of all public API’s delay
time.

FR-se #22-2 The GCS maintains average response time for
all APIs.

FR-se #22-1-1 The GCS displays warnings about malicious
attacks identified.

FR-se #22-2-1 Switching to alternative APIs when there’s no
response.

FR-se #22-2-2 Alternative APIs are updated by Admin.

It is worth to note that a systematic labeling and categorization of
levels of requirements is a key to ensuring efficient traceability [50].
This paper used a traceability analysis tool, ‘ARTracer [51]’ to manage
them in an efficient and integrated manner, while the labels used in the
case study were modified to aid understanding.

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.

6

a
p
a
c
g
p
a
r
a
i
g

t
g
l

5.3. Evaluation

In order to demonstrate the validity and effectiveness of the pro-
posed approach, we investigate the following two research questions
and more consideration on our future research direction.

RQ1. Validity . Is it possible to derive security requirements directly from
safety analysis results?

RQ2. Effectiveness. Does the goal-tree analysis provide sufficient informa-
tion for security analysis?

• RQ1. Validity. Is it possible to derive security requirements directly
from safety analysis results?
It is typically not straightforward to derive security concerns and
threats directly from the STPA analysis results such as UCA and
L/CS and even from the summary information, safety requirements.
⟨Fig. 7⟩ illustrates an example that security experts try to derive
security requirements directly from the same safety requirement
(SR #20). They need to do conduct a causal analysis on the safety
requirement using a security threat model like STRIDE, but have
no idea how it will be realized (implemented) for now. There will
be many ways to implement the safety requirement, and the use
of cache (ST #20-1-1-1) and public APIs (ST #20-2-1-1) are just
one of options that architects and system engineers can choose.
Most studies that try to integrate safety and security analyses
results together in unified or in parallel have replaced this lack
of information with ‘‘the experience and ability of security experts.’’
Specific unusual mappings to link specific analysis results to
the other often have attempted, and make it difficult to use
familiar and comfortable analysis techniques. However, If a goal-
tree analysis naturally refines the safety requirement into specific
functional ones as the previous example in ⟨Fig. 6⟩, we can take
a look at what options are available now and can fill the gap
seamlessly in the process of requirements engineering. Even if
they all will not be used later, we can devise all possible security
requirements for them all.
Of course, not all cases need the refinement through the goal-tree
analysis. There are many cases that security threats are derivable
directly from safety requirements by ‘experienced’ security experts
as illustrated in ⟨Fig. 8⟩. Security threats such as ‘‘Security threat
may exist in the battery information displayed on the controller.
(Tampering)’’ seems to be easily derivable from the safety re-
quirement (SR #16) directly by experienced experts. Our previous
work [30], which tried simultaneous derivation of safety and
security requirements without any aids, showed that about 10%
(2 out of 22) of safety requirements were the type that security
concerns and threats are hard to be driven out directly. Additional
20% of new security requirements could have been derived from
them.
The requirements engineering to derive safety and security re-
quirements is typically an iterative process. Security experts need
to analyze new security threats whenever new safety require-
ments and their refined ones are analyzed. We will keep encoun-
tering safety requirements that are not straightforward to derive
security directly at any time at any iteration. In addition, we also
need to store and keep track of all information yielded in the
iterative process of safety and security analysis.

• RQ2. Effectiveness. Does the goal-tree analysis provide sufficient
information for security analysis?
We are now in the early stage of software development, i.e.,
‘requirements analysis.’ Activities of requirements engineering are
performed iteratively to elicit, evaluate and finalize all high-
level functional and non-functional requirements. The functional
requirements which the goal-tree analysis refines from high-level
safety requirements will be sufficient for deriving appropriate
8

security concerns, threats and requirements. Since we are working c
in the early stage of software development, ‘requirements analy-
sis.’ More detailed functional requirements will be analyzed and
designed in the next phase, ‘design.’
In this stage of software development, requirements experts and
architects often cooperate to find the most appropriate system
architecture which can best satisfy the safety and security re-
quirements altogether. Architects often use ‘tactics’ [49], a set of
widely-used system engineering techniques, to meet the system’s
quality attributes such as security. While system engineers conduct
the goal-tree analysis to refine safety and security requirements
into more detailed ones, architects also consider the possibility of
applying appropriate tactics, and the decisions are reflected back
in the refined requirements, iteratively.
For example, ⟨Fig. 9⟩ shows the tactics for security, and we can
find various engineering techniques to achieve a required level of
security. In the example of the case study described in ⟨Fig. 6⟩,
the refined functional requirement (FR #20-2) and its security
concern (FR #20-2-1) look sufficient for architects to derive tactics
such as ‘Authorize Actors’ and ‘Detect Message Delay ’ to resolve the
security threats (ST #20-2-1-1).

• Consideration on conflicts between safety and security
We keep encountering various conflicts between requirements
in the process of requirements engineering, and the resolution
of the conflicts is one of the most important roles of this stage
[52]. Most studies [10] have tried to resolve the conflicts at
once through specific ways such as developing an integrated
model or mapping one to the other, i.e., indirectly. However,
requirements engineering as well as safety and security analyses
are not an once-in-a-lifetime activity but a structured set of ac-
tivities, performing iteratively up to meet a predefined goal. It is
important to embrace into the co-engineering process the fact that
‘‘Requirements keeps changing, safety and security analysis results
keep changing, and the conflicts between elicited requirements keep
changing, altogether.’’ Safety experts, security experts and software
system architects altogether should resolve the conflicts in the
cycles of requirements engineering.
A Goal-Tree Analysis provides notations such as ‘+ −’ to note the
positive and negative relationships between requirements. The
‘+ −’ notations in goal-trees are not an extension, and they can
be used to visually identify the inter-relationships between high-
level requirements (safety and security) and lower-level functional
requirements to achieve them. We are currently focusing on how
to systematically identify, analyze and resolve the conflicts in re-
quirements engineering process seamlessly, i.e., ‘(6) Coordinating
Safety and Security ’ in ⟨Fig. 3⟩.

. Conclusion and future work

This paper proposes a systematic co-engineering process of safety
nd security analysis, naturally embedded in requirements engineering
rocess. Any familiar safety and security analysis techniques can be
pplied together without additional effort. Any analysis techniques
an also be harmonized with requirements analysis activities, i.e., the
oal-tree analysis, in typical requirements engineering process. The pro-
osed approach considers requirements elicitation and analysis, safety
nalysis and security analysis altogether within the cyclic process of
equirements engineering, and recognizes that requirements as well as
nalyses results keep changing. It well understands well that engineers
n the field of safety-critical systems still find it comfortable to keep
oing on with the safety life-cycle of functional safety standards.

The paper suggests performing an appropriate safety analysis first
o derive safety requirements as summary information. It then performs
oal-tree analysis to refine the high-level safety requirements into
ower-level functional requirements, from which any security analysis

an work on to derive security requirements. Another goal-tree analysis

International Journal of Critical Infrastructure Protection 43 (2023) 100642

9

S. Jung et al.

Fig. 7. A trace of co-engineering (security analysis part) without the goal-tree analysis.

Fig. 8. A trace of co-engineering (security analysis part), which may not need the goal-tree analysis.

Fig. 9. Tactics for security [49].

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
then tries to refine the high-level security requirements into specific
functional ones too, and it ends one cycle of the analysis activity
in requirements engineering process. The sequence of safety analysis,
goal-tree refinement, security analysis and another goal-tree refinement
is seamlessly iterated in the process of requirements engineering, where
any conflict of requirements will have an opportunity to be resolved.
Our case study of a simplified UAV example uses STPA and STRIDE
techniques for safety and security analysis respectively, and shows that
the proposed approach is fully applicable up to industrial cases.

We are now focusing on how systematically identify, analyze and
resolve various conflicts between safety and security requirements,
which the iterative process of requirements engineering keeps causing.
We are planning to apply a variant of goal-trees, which can provide
useful notations to visualize the conflicts comprehensively. It seems
necessary first to classify and prioritize conflicts between different types
of requirements at different levels, with the support of requirement
management and analysis tools. We are also considering how safety
and security validation plans may affect the coordinating safety and
security at the requirement validation phase.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Junbeom Yoo reports financial support was provided by National
Research Foundation of Korea.

Data availability

No data was used for the research described in the article.

Acknowledgments

This paper was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1F1A1047246).

References

[1] Recommendations for Security and Safety Co-engineering, Tech. Rep., MERgE
ITEA2 - Project 11011, 2016.

[2] S. Paul, L. Rioux, Over 20 years of research into cybersecurity and safety engi-
neering: A short bibliography, WIT Trans. Built Environ. 151 (2015) 335–349,
http://dx.doi.org/10.2495/SAFE150291.

[3] IEC 62859, Nuclear power plants - Instrumentation and control systems -
Requirements for coordinating safety and cybersecurit, 2016.

[4] Functional Safety of Electrical, Electronic and Programmable Electronic (E/E/PE)
Safety-Related Systems (IEC 61508), Standard, International Electrotechnical
Commission (IEC), 2000.

[5] Nuclear Power Plants - Instrumentation and Control Systems Important to Safety
- Software Aspects for Computer-Based Systems Performing Category a Functions,
Standard, International Electrotechnical Commission (IEC), 2006.

[6] Nuclear Power Plants - Instrumentation and Control Systems Important to Safety
- Software Aspects for Computer-Based Systems Performing Category B or C
Functions, Standard, International Electrotechnical Commission (IEC), 2018.

[7] X. Lyu, Y. Ding, S.-H. Yang, Safety and security risk assessment in cyber-physical
systems, IET Cyber-Phys. Syst. Theory Appl. 4 (3) (2019) 221–232.

[8] S. Sadvandi, N. Chapon, L. Piètre-Cambacédès, Safety and security interdepen-
dencies in complex systems and sos: Challenges and perspectives, in: Complex
Systems Design and Management, Springer Berlin Heidelberg, 2012, pp. 229–241.

[9] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, Y. Halgand, A survey of approaches
combining safety and security for industrial control systems, Reliab. Eng. Syst.
Saf. 139 (2015) 156–178, http://dx.doi.org/10.1016/j.ress.2015.02.008, URL
https://www.sciencedirect.com/science/article/pii/S0951832015000538.

[10] E. Lisova, I. Šljivo, A. Čaušević, Safety and security co-analyses: A systematic
literature review, IEEE Syst. J. 13 (3) (2019) 2189–2200, http://dx.doi.org/10.
1109/JSYST.2018.2881017.

[11] D.P. Eames, J. Moffett, The integration of safety and security requirements, in:
10

Computer Safety, Reliability and Security, 1999, pp. 468–480.
[12] L. Shan, B. Sangchoolie, P. Folkesson, J. Vinter, E. Schoitsch, C. Loiseaux, A
survey on the applicability of safety, security and privacy standards in developing
dependable systems, in: A. Romanovsky, E. Troubitsyna, I. Gashi, E. Schoitsch, F.
Bitsch (Eds.), Computer Safety, Reliability, and Security, Springer International
Publishing, Cham, 2019, pp. 74–86.

[13] B. Nuseibeh, S. Easterbrook, Requirements engineering: A roadmap, in: Proceed-
ings of the Conference on the Future of Software Engineering, ICSE ’00, 2000,
pp. 35–46.

[14] IEEE Standard for Developing a Software Project Life Cycle Process, IEEE Std
1074-2006 (Revision of IEEE Std 1074-1997), 2006, pp. 1–110, http://dx.doi.
org/10.1109/IEEESTD.2006.219190.

[15] IEEE Recommended Practice for Software Requirements Specifications, IEEE Std
830-1998, 1998, pp. 1–40, http://dx.doi.org/10.1109/IEEESTD.1998.88286.

[16] A. van Lamsweerde, Goal-oriented requirements engineering: A guided tour, in:
5th IEEE International Symposium on Requirements Engineering, RE’01, 2001.

[17] V. Bolbot, G. Theotokatos, L.M. Bujorianu, E. Boulougouris, D. Vassalos, Vulnera-
bilities and safety assurance methods in cyber-physical systems: A comprehensive
review, Reliab. Eng. Syst. Saf. 182 (2019) 179–193, http://dx.doi.org/10.1016/
j.ress.2018.09.004.

[18] C. Raspotnig, A. Opdahl, Comparing risk identification techniques for safety and
security requirements, J. Syst. Softw. 86 (4) (2013) 1124–1151, http://dx.doi.
org/10.1016/j.jss.2012.12.002.

[19] N.G. Leveson, Safeware: System Safety and Computers, Association for
Computing Machinery, New York, NY, USA, 1995.

[20] C.A. Ericson, Hazard Analysis Techniques for System Safety, John Wiley and
Sons, 2015.

[21] G. Kavallieratos, S. Katsikas, V. Gkioulos, Cybersecurity and safety co-engineering
of cyberphysical systems - A comprehensive survey, Future Internet 12 (4) (2020)
http://dx.doi.org/10.3390/fi12040065.

[22] M. Steiner, P. Liggesmeyer, Qualitative and quantitative analysis of CFTs taking
security causes into account, in: Computer Safety, Reliability, and Security, 2015,
pp. 109–120.

[23] G. Macher, A. Höller, H. Sporer, E. Armengaud, C. Kreiner, A combined
safety-hazards and security-threat analysis method for automotive systems, in:
Computer Safety, Reliability, and Security, 2015, pp. 237–250.

[24] C. Raspotnig, P. Karpati, V. Katta, A combined process for elicitation and
analysis of safety and security requirements, in: Enterprise, Business-Process and
Information Systems Modeling, 2012, pp. 347–361.

[25] S. Plósz, C. Schmittner, P. Varga, Combining safety and security analysis for
industrial collaborative automation systems, in: Computer Safety, Reliability, and
Security, 2017, pp. 187–198.

[26] E. Ruijters, S. Schivo, M. Stoelinga, A. Rensink, Uniform analysis of fault trees
through model transformations, in: 2017 Annual Reliability and Maintainabil-
ity Symposium, RAMS, 2017, pp. 1–7, http://dx.doi.org/10.1109/RAM.2017.
7889759.

[27] N.G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety,
MIT press Cambridge, 2011.

[28] N.G. Leveson, J.P. Thomas, STPA Handbook, Cambridge, MA, USA, 2018.
[29] W. Young, N.G. Leveson, An integrated approach to safety and security based

on systems theory, Commun. ACM 57 (2) (2014) 31–35.
[30] Y. Heo, D.-A. Lee, J. Yoo, An approach to analyze security and safety require-

ments for UAV using STPA-Sec, in: Korea Software Congress 2020, KSC2020,
2020, pp. 183–185 (in Korean).

[31] M.L. Salgado, M.S. de Sousa, Cybersecurity in aviation: the STPA-sec method
applied to the tcas security, in: 2021 10th Latin-American Symposium on
Dependable Computing, LADC, IEEE, 2021, pp. 1–10.

[32] J.M. Sayers, B.E. Feighery, M.T. Span, A STPA-Sec case study: Eliciting early
security requirements for a small unmanned aerial system, in: 2020 IEEE Systems
Security Symposium, SSS, IEEE, 2020, pp. 1–8.

[33] E. Troubitsyna, An integrated approach to deriving safety and security require-
ments from safety cases, in: 2016 IEEE 40th Annual Computer Software and
Applications Conference, Vol. 2, COMPSAC, IEEE, 2016, pp. 614–615.

[34] C. Ponsard, G. Dallons, P. Massonet, Goal-oriented co-engineering of security
and safety requirements in cyber-physical systems, in: International Conference
on Computer Safety, Reliability, and Security, Springer, 2016, pp. 334–345.

[35] G. Sabaliauskaite, L.S. Liew, J. Cui, Integrating autonomous vehicle safety and
security analysis using stpa method and the six-step model, Int. J. Adv. Secur.
11 (1 and 2) (2018) 160–169.

[36] C. Schmittner, Z. Ma, P. Puschner, Limitation and improvement of STPA-Sec for
safety and security co-analysis, in: International Conference on Computer Safety,
Reliability, and Security, SAFECOMP, Springer, 2016, pp. 195–209.

[37] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, S. Sezer, STPA-SafeSec: Safety
and security analysis for cyber-physical systems, J. Inf. Secur. Appl. 34 (2017)
183–196, http://dx.doi.org/10.1016/j.jisa.2016.05.008.

[38] W.G. Temple, Y. Wu, B. Chen, Z. Kalbarczyk, Systems-theoretic likelihood and
severity analysis for safety and security co-engineering, in: Reliability, Safety, and
Security of Railway Systems. Modelling, Analysis, Verification, and Certification,
2017, pp. 51–67.

[39] G. Kavallieratos, S. Katsikas, V. Gkioulos, SafeSec Tropos: Joint security and
safety requirements elicitation, Comput. Stand. Interfaces 70 (2020) 103429,
http://dx.doi.org/10.1016/j.csi.2020.103429.

http://refhub.elsevier.com/S1874-5482(23)00055-0/sb1
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb1
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb1
http://dx.doi.org/10.2495/SAFE150291
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb3
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb3
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb3
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb4
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb4
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb4
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb4
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb4
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb5
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb5
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb5
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb5
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb5
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb6
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb6
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb6
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb6
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb6
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb7
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb7
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb7
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb8
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb8
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb8
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb8
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb8
http://dx.doi.org/10.1016/j.ress.2015.02.008
https://www.sciencedirect.com/science/article/pii/S0951832015000538
http://dx.doi.org/10.1109/JSYST.2018.2881017
http://dx.doi.org/10.1109/JSYST.2018.2881017
http://dx.doi.org/10.1109/JSYST.2018.2881017
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb11
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb11
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb11
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb12
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb13
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb13
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb13
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb13
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb13
http://dx.doi.org/10.1109/IEEESTD.2006.219190
http://dx.doi.org/10.1109/IEEESTD.2006.219190
http://dx.doi.org/10.1109/IEEESTD.2006.219190
http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb16
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb16
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb16
http://dx.doi.org/10.1016/j.ress.2018.09.004
http://dx.doi.org/10.1016/j.ress.2018.09.004
http://dx.doi.org/10.1016/j.ress.2018.09.004
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb19
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb19
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb19
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb20
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb20
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb20
http://dx.doi.org/10.3390/fi12040065
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb22
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb22
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb22
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb22
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb22
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb23
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb23
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb23
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb23
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb23
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb24
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb24
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb24
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb24
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb24
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb25
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb25
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb25
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb25
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb25
http://dx.doi.org/10.1109/RAM.2017.7889759
http://dx.doi.org/10.1109/RAM.2017.7889759
http://dx.doi.org/10.1109/RAM.2017.7889759
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb27
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb27
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb27
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb28
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb29
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb29
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb29
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb30
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb30
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb30
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb30
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb30
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb31
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb31
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb31
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb31
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb31
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb32
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb32
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb32
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb32
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb32
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb33
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb33
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb33
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb33
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb33
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb34
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb34
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb34
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb34
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb34
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb35
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb35
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb35
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb35
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb35
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb36
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb36
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb36
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb36
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb36
http://dx.doi.org/10.1016/j.jisa.2016.05.008
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb38
http://dx.doi.org/10.1016/j.csi.2020.103429

International Journal of Critical Infrastructure Protection 43 (2023) 100642S. Jung et al.
[40] F. Reichenbach, J. Endresen, M.M.R. Chowdhury, J. Rossebø, A pragmatic
approach on combined safety and security risk analysis, in: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering Workshops, 2012,
pp. 239–244, http://dx.doi.org/10.1109/ISSREW.2012.98.

[41] Y.-R. Chen, S.-J. Chen, P.-A. Hsiung, I.-H. Chou, Unified security and safety
risk assessment - A case study on nuclear power plant, in: 2014 International
Conference on Trustworthy Systems and their Applications, 2014, pp. 22–28,
http://dx.doi.org/10.1109/TSA.2014.13.

[42] S. Aljahdali, J. Bano, N. Hundewale, Goal oriented requirements engineering - A
review, in: ISCA International Conference on Computer Applications in Industry
and Engineering, CAINE 2011, 2011.

[43] ISO/IEC 25010, ISO/IEC 25010:2011, Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.

[44] A. Shostack, Threat Modeling: Designing for Security, Wiley, 2014.
[45] Microsoft, The STRIDE threat model, 2009.
[46] R. Khan, K. McLaughlin, D. Laverty, S. Sezer, STRIDE-based threat modeling for

cyber-physical systems, in: 2017 IEEE PES Innovative Smart Grid Technologies
Conference Europe, ISGT-Europe, 2017, pp. 1–6, http://dx.doi.org/10.1109/
ISGTEurope.2017.8260283.
11
[47] E.B. Fernandez, Threat modeling in cyber-physical systems, in: 2016 IEEE
14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl
Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress,
DASC/PiCom/DataCom/CyberSciTech, 2016, pp. 448–453, http://dx.doi.org/10.
1109/DASC-PICom-DataCom-CyberSciTec.2016.89.

[48] S. Abdullahi, M. Zayyad, N. Yusuf, L. Idris Bagiwa, A. Nura, A. Zakari, B.
Dansambo, Software requirements negotiation: A review on challenges, Int. J.
Innov. Comput. 11 (2021) 1–6.

[49] J. Bass, L.J. Bass, R. Kazman, Software Architecture in Practice, 3rd ed., Pearson,
2013.

[50] S. Winkler, J. von Pilgrim, A survey of traceability in requirements engineering
and model-driven development, Softw. Syst. Model. 9 (4) (2010) 529–565.

[51] S. Jung, A Comprehensive Relationship Analysis for Heterogeneous Artifacts in
Multiple-Collaborative Safety-Critical Systems (Ph.D. thesis), Konkuk University,
2022.

[52] T. Gu, M. Lu, L. Li, Extracting interdependent requirements and resolving
conflicted requirements of safety and security for industrial control systems, in:
2015 First International Conference on Reliability Systems Engineering, ICRSE,
2015, pp. 1–8, http://dx.doi.org/10.1109/ICRSE.2015.7366481.

http://dx.doi.org/10.1109/ISSREW.2012.98
http://dx.doi.org/10.1109/TSA.2014.13
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb42
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb42
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb42
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb42
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb42
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb43
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb43
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb43
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb43
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb43
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb44
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb45
http://dx.doi.org/10.1109/ISGTEurope.2017.8260283
http://dx.doi.org/10.1109/ISGTEurope.2017.8260283
http://dx.doi.org/10.1109/ISGTEurope.2017.8260283
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.89
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.89
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.89
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb48
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb48
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb48
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb48
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb48
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb49
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb49
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb49
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb50
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb50
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb50
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb51
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb51
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb51
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb51
http://refhub.elsevier.com/S1874-5482(23)00055-0/sb51
http://dx.doi.org/10.1109/ICRSE.2015.7366481

	A systematic co-engineering of safety and security analysis in requirements engineering process
	Introduction
	Related Work
	Background
	STPA
	Goal-Tree Analysis in Requirements Engineering
	STRIDE Threat Model

	The Co-Engineering Process of Safety and Security Analysis
	The Case Study: A Simplified UAV
	An Overview of the Case Study
	The Case Study Results
	Evaluation

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

