
A Model Projection Technique
for Compositional Verification using Model Checking

Dong-Ah LeeO, Junbeom Yoo

Department of Computer Science and Engineering, Konkuk University
{ldalove, jbyoo}@konkuk.ac.kr

모델 체킹을 활용한 구성 검증을 위한 모델 투영 기법

이동아 O, 유준범

건국대학교, 컴퓨터공학과

Summary
Model checking of large-scale software is hardly possible because the software is too complex and large.

Model checking of a component which is a small part of the software is acceptable to avoid the state explo-
sion problem where the component is not huge and too complex. This paper introduces a novel technique,
called model projection, for compositional verification using model checking. The model projection is an
activity to identify proper parts of a whole system with respect to verification purposes in order to apply
model checking to the large-scale software.

1. Introduction

Model checking is one of formal verification techniques,
which checks that a model meets its specification with the
aid of automated support [1]. The technique is possible to
model a system at any level of the system hierarchically,
and to make properties along the level of the system hier-
archy. The checking, however, restricts the model not only
to have a finite number of states but also to have the size
and complexity which a checking algorithm is able to
search state space of the model exhaustively. The state
explosion problem [2] may arise, as a model is too huge
and complex.

Verification at a component level using model checking

is acceptable to avoid the state explosion problem where a
single component is not huge and complex. Model check-
ing of a component checks that the component meets local
properties at the same level of detail. Just because results
of the checking show that a model of the component satis-
fies the properties does not mean that the component cor-
rectly works in the global system. It depends on how the
component affects the whole system. Furthermore, model
checking compositionally requires analysis of relations
and influence between components at a system level in
order to assert that the results are valid at the system level.

This paper introduces a novel technique, called model

projection, for compositional verification using model

checking techniques. The model projection is an activity
to identify proper parts of a whole system with respect to
verification purposes. The technique projects small mod-
els (formal models at a component-level) from a large one
(a formal model at a system-level) in order to verify the
proper parts using model checking. The model projection
reveals relations and influences between the identified
parts and the whole system.

2. The model projection technique

The model projection is a technical process to identify

relevant parts simulating a formal model at a system-level
with scenarios derived from a verification requirement.
<Fig. 1> describes a brief process of the technique. Mod-
eling FMs (formal model at a system-level) refers software
requirement or design specifications and generating Si (ith
simulation scenario) refers verification requirements. Be-
cause of the size and complexity, the FMs is usually much
abstracted, which does not have specific information.
Simulation of FMs with Si identifies Pi (parts projected by
the ith simulation scenario) which are running parts of the
system with respect to the Si.

The Pi is a target for the compositional verification us-
ing model checking. Traceability analysis assists identify-
ing specific information for modeling with specific infor-
mation. The analysis traces the Pi to relevant parts of
source codes, Ci. Finally, we have a formal model, fmi,

KCSE 2020 제 22권 제 1호

184

which includes running parts by simulation of FMs with Si.
Verification properties for model checking of fmi can be
both local properties of Pi and global properties of Si. The
model checking of fmi is another phase of the composi-
tional verification, which requires effort on selection of a
model checker, property specification, analysis of its re-
sults and so on. Because the model checking itself is not a
main idea in the paper, we omitted the process in detail.

The one of easiest ways to project the parts (Pi) is to

model the FMs with a tool which can model and simulate
a system at the system-level, for instance, Statemate [3].
Statemate is a reasonable tool for modeling and verifying
large and complex system at a system-level, since it is
possible to model hierarchies of the system using various
types of graphical languages, such as a Module-chart, an
Activity-chart, a Flow-chart, a State-chart, etc. Statemate
indicates active parts (Pi) through coloring the active parts
during a simulation. The indicating active parts are a start-
ing point of traceability analysis to identify relevant parts
in source codes (Ci) with a simulation scenario (Si).

3. Case study

Qplus-AIR [4] is a real-time operating system comply-
ing the ARINC 653 specification [5], which ETRI devel-
oped for avionics. Formal modeling and simulation of
Qplus-AIR uses Statemate and the modeling refers a soft-
ware design specification (SDS) of Qplus-AIR. <Fig. 2>
shows an overall model of Qplus-AIR at a system-level of

the operating system.

Figure 2. The formal model of a system level
of Qplus-AIR with Statemate

Generation of simulation scenarios refers ARINC 653

specification, as the Qplus-AIR should comply require-
ments in the specification. Simulation and compositional
verification in this paper focus on transitions of partition
modes—the partition is one of key services in ARINC 653
to execute one or more avionics applications independent-
ly. There are 4 operating modes and transitions as de-
scribed in <Fig. 3>.

Figure 3. Partition modes and transitions in ARINC 653

Simulation scenarios only include the transitions be-
tween modes. Results of the simulation indicated small
parts of the model color activated charts in violet. We
found 9 functions and one major variable are related with
the simulation scenarios through traceability analysis with
the SDS, the formal model with Statemate, and source
codes.

Model checking uses CBMC [6], which is a bounded

model checker for programs written in C or C++ pro-
gramming language. CBMC is available for Qplus-AIR
because it is written in the C. We put an assumption
statement and an assertion statement in source code to
check the possibility that the mode transition from IDLE
to NORMAL. The assumption means pre-condition of a
partition’s mode, which is IDLE in the case. The assertion

Figure 1. The model projection by simulation

KCSE 2020 제 22권 제 1호

185

specifies post-condition of the mode and a return value for
the transition function, NORMAL and no error. The asser-
tion statement in the source code below:

assert((partition_mode == NORMAL)

&& (return == QPLUS_ERRNO_OK));

If the conditions in the assertion evaluate to true, then

the mode transition from IDLE to NORMAL is possible.
<Fig. 4> shows a screen dump of the verification result
whether the conditions evaluate to true or false. “VERI-
FICATION SUCCESSFUL (no false evaluation)” at the
bottom of the result means that IDLE to NORMAL with-
out errors is possible in source code of Qplus-AIR.

Figure 4. The verification result of a mode transition from

IDLE to NORMAL by CBMC

Not only software development documents of Qplus-

AIR but also ARINC 653 does not specify anything about
the result. ARINC 653 does not give a result of the transi-
tion, while other invalid requests, such as a transition from
COLD_START to WARM_START, are in requirements.
Nevertheless, scheduling a partition without initialization
is not normal behavior, and undefined mode transitions
should not be allowed even if they are not possible to oc-
cur in current situation. It must be only possible within a
strong assumption that the operating system, applications,
or any kind of components in aircraft do not request the
API, SET_PARTITION_MODE, to change a partition’s
mode to NORMAL when it is IDLE.

4. Conclusions

The paper introduced the model projection technique to
identify relevant parts with verification purposes. Compo-
sitional verification without systematic analysis about re-
lation and influence between components at a system level
is easy to lose confidence that results of the verification
are still valid at the system level. The model projection
identifies the relations and influence through simulation of
a formal model of a whole system and reveals the relevant
parts.

We are now developing an elaborate model and a tool

for traceability analysis to make projection much easier
and quicker. Since the traceability in hand requires a large
amount of effort on finding traces between documents,
models, and source codes. If all information is modeled
properly, tracing between the information requires less
effort. Furthermore, an assistant tool we plan may let the
traceability analysis be semi-automatic or full-automatic.

Acknowledgement
This research was supported by Next-Generation Infor-
mation Computing Development Program through the
National Research Foundation (NRF) of Korea funded by
the Ministry of Science, ICT (NRF-2017M3C4A7066479)
and Basic Science Research Program through NRF funded
by the Ministry of Education (NRF-2017R1D1A1B0303
0065).

References

[1] E. Clarke, et al., Model Checking, MIT Press, 2018.
[2] E. Clarke, et al., Progress on the state explosion prob-

lem in model checking., Informatics, pp. 176–194,
2001.

[3] David Harel, et al., Statemate: A working environment
for the development of complex reactive systems,
IEEE Transactions on software engineering, Vol. 16,
No. 4, pp. 403-414, 1990.

[4] T. Kim, et al., Qplus/Esto-AIR: DO-178B Level A
Certified RTOS and IDE for Supporting ARINC 653,
Communications of the Korean Institute of Infor-
mation Scientists and Engineers, Vol. 30 No. 9, 65-70,
2012.

[5] Airlines Electronic Engineering Committee, Avionics
Application Software Standard Interface ARINC Spec-
ification 653 Part 1, Aeronautical Radio Inc., 2006.

[6] E. Clarke, D. Kroening, and F. Lerda, “A Tool for
Checking ANSI-C Programs,” Tools and Algorithms
for the Construction and Analysis of Systems (TACAS
2004), LNCS 2988, 168-176, 2004.

KCSE 2020 제 22권 제 1호

186

