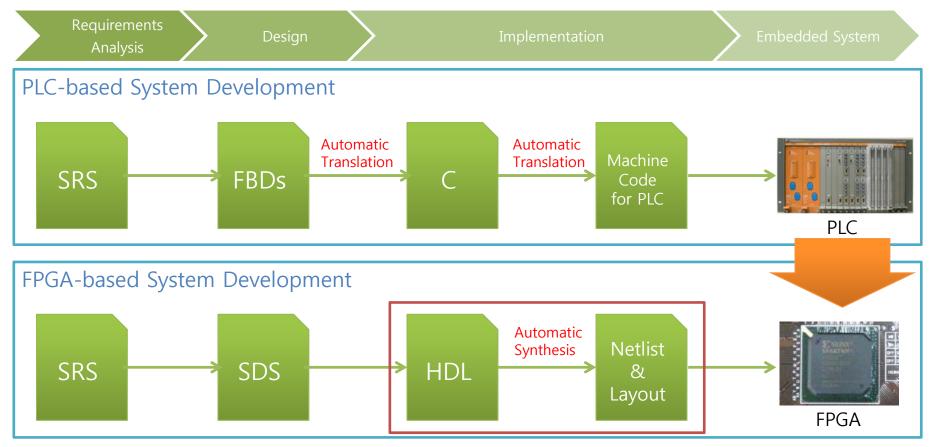
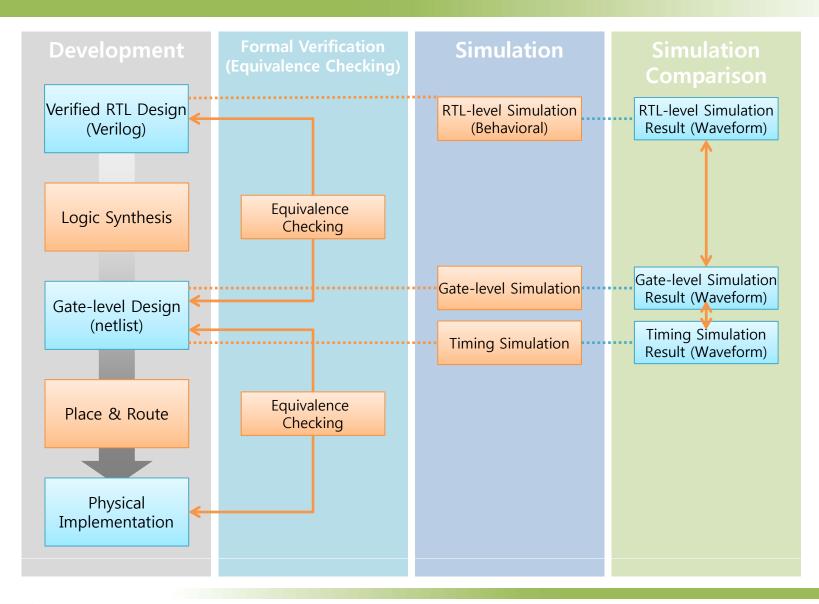
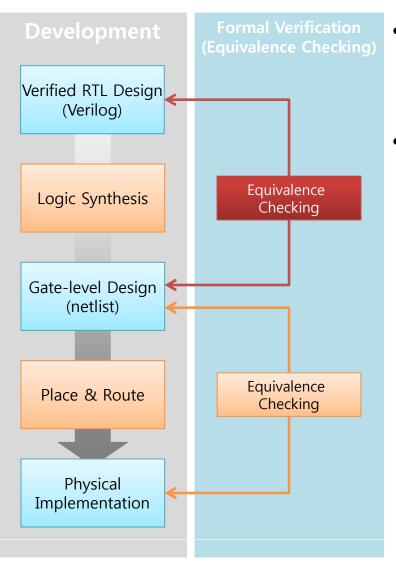
KNS 2013 Spring 광주 김대중컨벤션센터 2013.5.29 ~ 2013.5.31

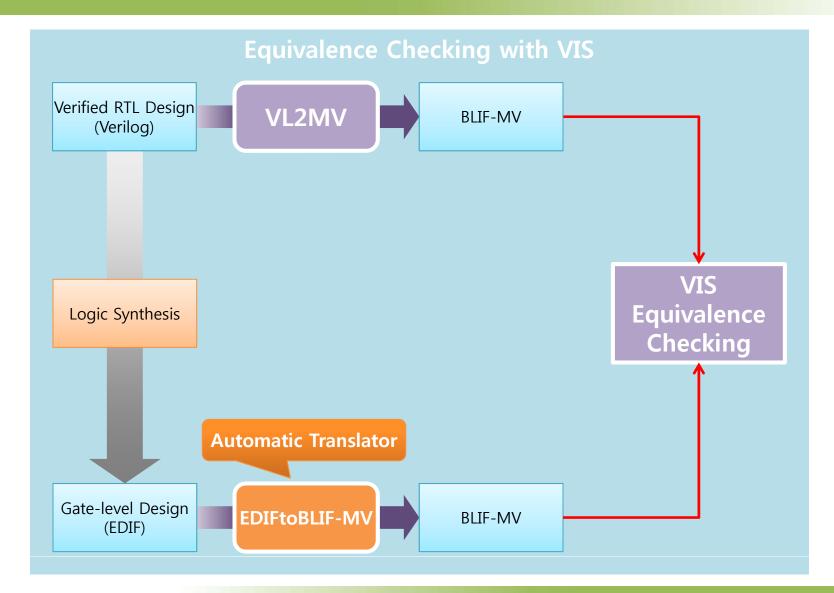

Equivalence Checking between Pre-synthesis and Post-synthesis Programs by Using VIS Jong-Hoon Lee Dependable Software Laboratory Konkuk University


Introduction

- Platform Change from PLC to FPGA in Nuclear Industry
 - Behaviorally Equivalence between Outputs is required
 - Formal Method based Techniques



Verifications in FPGA


Equivalence Checking with VIS

- Equivalence Checking is required
 - Equivalence Checking between Designs
- VIS Verification System
 - Developed by
 Univ. of California at Berkeley,
 Univ. of Colorado at Boulder and
 Univ. of Texas
 - It has Equivalence Checking feature
 - It reads BLIF-MV modeling language
 - It only supports Verilog format

Equivalence Checking with VIS

EDIFtoBLIF-MV

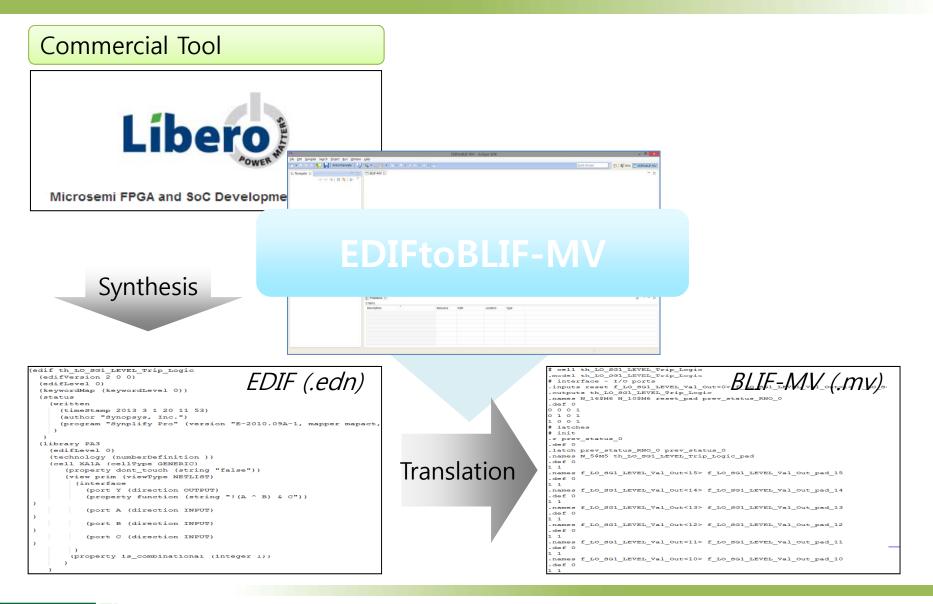
- Translation Rule
 - We defined translation templates
 - Translate into BLIF-MV from EDIF using defined rules

	EDIF	BLIF-MV	Description
1-1	(cell <name_of_cell> </name_of_cell>	.model ⊲name_of_cel⊳ .end	Cell in work library Translate to '.model'
1-2	(cell <name_of_cell> (view</name_of_cell>	.names <1nput> ··· <output> .def 0 <truth_table_of_functionality></truth_table_of_functionality></output>	'combinational' cell in external library Translate to truth table
1-3	(cell <name cell="" of=""> (property is sequential (1)) (view (interface (port <name_of_port> (direction <input output=""/>) (property function (<functionality>)) </functionality></name_of_port></name>	.r <reset> .def 0 Jatch <input/> <output></output></reset>	'sequential' cell in external library Translate to '.latch'
2	(cell <name_of_cell> (view (interface (port <name_of_port> (direction <1nput/Output>))</name_of_port></name_of_cell>	.model <name_of_cell> .inputs <input/> <input/> .outputs <output> <output> .end</output></output></name_of_cell>	Ports in Cell in work library Translate to '.inputs' and/or 'outputs'
3-1	(cell (view (contents (instance <name_of_instance> (viewRef <name_of_referred_view> (cellRef <name_of_referred_cell> </name_of_referred_cell></name_of_referred_view></name_of_instance>	.names <input/> ··· <output> .def0 <truth_table_of_functionality_of_referre d_cell></truth_table_of_functionality_of_referre </output>	Instance which refer to 'combinational' cell
3-2	(cell (view (contents (instance <name_of_instance> (viewRef <name_of_referred_view> (cellRef <name_of_referred_cel> </name_of_referred_cel></name_of_referred_view></name_of_instance>	.r <reset> .def 0 .latch <input/> <output></output></reset>	Instance which refer to 'sequential' cell
3-3	(cell (view (contents (instance <name_of_instance> (viewRef <name_of_referred_view> (cellRef <name_of_referred_cel> </name_of_referred_cel></name_of_referred_view></name_of_instance>	subckt ⊲name_of_referred_cel⊳ ⊲name_of_instance> ⊲Input> … ⊲Output> … 	Instance which refer to other cell in work library
3-4	(cell (view (contents (net ~name_of_net> (joined (portRef ~Input_Port> (instanceRef <name_of_input_instance>)) </name_of_input_instance>	.names <name_of_input_instance> <name_of_output_instance> .def0 1 1</name_of_output_instance></name_of_input_instance>	Network connection between cells

• A part of translation rule

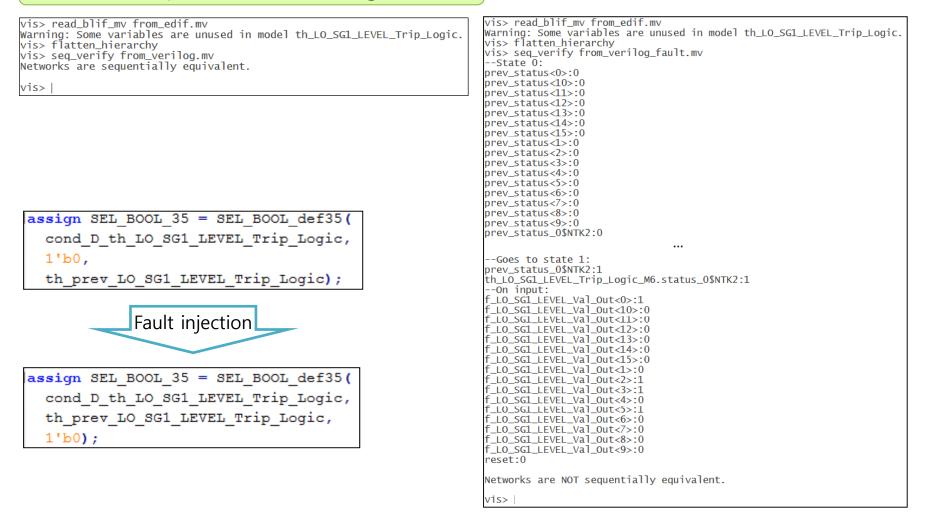
Rule	EDIF	BLIF-MV	Description
1-1	(cell <name_of_cell> </name_of_cell>	.model <name_of_cell> .end</name_of_cell>	Cell in work library Translate to '.model'
1-2	<pre>(cell <name_of_cell> (view (interface (port <name_of_port> (direction <input output=""/>) (property function (<functionality>))</functionality></name_of_port></name_of_cell></pre>	.names <input/> ··· <output> .def 0 <truth_table_of_functionality></truth_table_of_functionality></output>	'combinational' cell in external library Translate to truth table
1-3	<pre>(cell <name_of_cell> (property is_sequential (1)) (view (interface (port <name_of_port> (direction <input output=""/>) (property function (<functionality>)) </functionality></name_of_port></name_of_cell></pre>	.r <reset> .def 0 .latch <input/> <output></output></reset>	'sequential' cell in external library Translate to '.latch'

A part of KNICS RPS BP Logic (*th_LO_SG1_LEVEL_Trip*) ${\color{black}\bullet}$



It consist of 6 shutdown logic (792 FB) We only used 17 FB

Verilog HDL module th LO SG1 LEVEL Trip Logic(clk, reset, f LO SG1 LEVEL Val Out, input clk; input reset; input [15:0] f_LO_SG1_LEVEL_Val_Out; output th_LO_SG1_LEVEL_Trip_Logic; wire cond A; wire cond B; wire cond C; wire cond D; wire [15:0] status; reg [15:0] prev status; initial prev status = 16'b00000000000000; cond A th LO SG1_LEVEL Trip_Logic th LO SG1_LEVEL_Trip_Logic M1(clk, cond_B_th_L0_SG1_LEVEL_Trip_Logic th_L0_SG1_LEVEL_Trip_Logic_M2(clk, cond C th LO SG1 LEVEL Trip Logic th LO SG1 LEVEL Trip Logic M3(clk, cond D th LO SG1 LEVEL Trip Logic th LO SG1 LEVEL Trip Logic M4(clk, th_LO_SG1_LEVEL_Trip_Logic_Processing_th_LO_SG1_LEVEL_Trip_Logic_th_I status th LO SG1 LEVEL Trip Logic th LO SG1 LEVEL Trip Logic M6(clk, always @(posedge clk) begin if(reset) begin prev status = 16'b00000000000000; end else begin prev status = status; \mathbf{end} end endmodule module cond_A_th_LO_SG1_LEVEL_Trip_Logic(clk, f_LO_SG1_LEVEL_Val_Out // input, output variables input clk; input [15:0] f LO SG1 LEVEL Val Out; input [15:0] k LO SG1 LVL Trip Set; output out;


EDIF

<pre>(edifVersion 2 (edifLevel 0) (keywordMap (k (status (written (timeStamp (author "S (program ")) (library PA3 (edifLevel 0 (technology (cell XAIA ((property (view pri</pre>	<pre>seywordLevel 0)) 2 2013 3 1 20 11 53) ynopsys, Inc.") Synplify Pro" (version "E-2010.09A-1, m (numberDefinition)) cellType GENERIC) dont_touch (string "false")) m (viewType NETLIST) face : Y (direction OUTPUT) : A (direction INFUT) : B (direction INFUT) : C (direction INFUT) : C (direction INFUT) : y is_combinational (integer 1)) :ellType GENERIC) dont_touch (string "false")) m (viewType NETLIST) :=== : Y (direction OUTPUT) : ellType GENERIC) dont_touch (string "false")) m (viewType NETLIST) :=== : Y (direction OUTPUT) : ellType GENERIC) : direction OUTPUT) : ellType GENERIC) : for the term of the term of the term of the term of ter</pre>		Translation	<pre># cell th_LO_SG1_LEVEL_Trip_Logic .model th_LO_SG1_LEVEL_Trip_Logic # interface - I/O ports .inputs reset f_LO_SG1_LEVEL_Val_Out<o> .outputs th_LO_SG1_LEVEL_Trip_Logic .names N_16SM6 N_10\$M6 reset_pad prev_s .def 0 0 0 0 1 0 1 0 1 1 0 0 1 # latches # init .r prev_status_0 .def 0 .latch prev_status_RNO_0 prev_status_0 .names N_5\$M5 th_LO_SG1_LEVEL_Trip_Logi .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<15> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<15> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<14> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<13> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<12> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<11> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<10> f_LO_ .def 0 1 1 .names f_LO_SG1_LEVEL_Val_Out<10> f_LO_ .def 0 1 1</o></pre>	status_RNO_0 ic_pad
	Verilog HDL	EDIF		BLIF-MV from Verilog	BLIF-MV from EDIF
LoC	288	1210		4944	344
Node	8 modules	2 librar 7 cells	ies	24 models	7 models

BLIF-MV

Results of Equivalence Checking with VIS

Conclusion and Future Work

- Confirmation of Correctness of Synthesis
 - Formal Method based Technique (Equivalence Checking)
- Automatic Program Translation
 - Translate into BLIF-MV from EDIF
 - EDIF: Gate-level netlist format of EDA tools
 - BLIF-MV: Front-end format of VIS
- Future Work
 - Formalize the translation rule
 - A whole set of KNICS RPS BP Logic
 - Equivalence Checking between Gate-level Design and Physical Layout

