

반응형 실시간 소프트웨어를 명세하고 분석하기 위한 기법

오윤주, 조재명, 유준범, 차성덕

한국과학기술원 전기전자 및 전산학과 전산학 전공
{yjoh, jmcho, jbyoo, sdcha}@salmosa.kaist.ac.kr

A Technique to Specify and Analyze Reactive and Real-Time Software

Younju Oh, Jaemyoung Cho, Junbeom Yoo, Sungdeok Cha
Div. of CS, Dept. of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology

Abstract
Writing requirements in formal notation for a safety-critical system can improve software quality and reduce the errors that
may arise later on in the software development life cycle. In this paper, we propose a formal specification approach used to
describe the nuclear control system. The approach is based on the existing AECL approach that was the only formal
specification technique applied to nuclear control systems in the past. Although the approach is AECL-based, the complex
descriptions of certain requirements have been reduced by using different specification techniques. We discuss the differences
and how the proposed approach provides not only specification but also verification environment.

1. Introduction
There is a growing need for reliable methods in designing
correct and safe systems. In safety-critical systems, such as
nuclear control systems, inconsistencies within the
description of the system causes accidents to occur which
results in costly damages. For such systems to be safe and
reliable, inconsistency in describing and specifying
requirements should be avoided by using formal
specification approaches in the software requirements
specification (SRS).

Many specification languages are suggested to specify
reactive and real-time systems, but it is difficult to find a
suitable language for nuclear control systems. A nuclear
system is an extremely safety-critical system, and stable
technologies should be applied to it.

In this paper, we propose a technique to specify and
analyze reactive and real-time software that provides
environment to verify the functional requirements of a
nuclear control system. Specifying requirements in a formal
notation allows such properties as unambiguity, consistency,
and completeness of the SRS. However, verifying the
properties derived from the requirements still remains
difficult. The existing techniques[1] are time consuming
and require manual effort to verify the properties of the
system. The proposed technique provides not only
specification approach in specifying requirements but also
verification environment.

The proposed specification approach is based on the
existing AECL approach[2]. It shares the same notation of
describing system requirements in Function Overview
Diagram (FOD) and in describing each function in tabular
notation using the Structured Decision Table (SDT).
However, the main purpose of our approach is to reduce the
specifying complexity of the AECL approach. The AECL
approach describes all requirements specifications based on
function nodes in FOD and tables in SDT, which makes
timing requirements and history related requirements
difficult to specify, whereas the proposed approach uses

automata and timed-automata to specify such behaviors that
are not easily expressed with the notations of FOD and SDT.

This paper is organized as follows. Section 2 gives an
overview of the existing AECL approach. Section 3
introduces the proposed approach and a detailed description
of how it differs from the existing AECL approach. A brief
introduction on the editor made for this approach is also
included in this section. In section 4, we present some
conclusions and future work.

2. AECL Approach
The Atomic Energy of Canada Limited (AECL) approach
specifies a methodology and format for the specification of
software requirements for safety critical software used in
real-time control and monitoring systems in nuclear
generating systems. It is a SCR-style SRS verification
method based on Parnas’ four variable method. A system
reads environment states through monitored variables that
are transformed into input variables. The output values of
the output variables are calculated and are changed into
control variables.

The AECL provides two different views of the
requirements. A larger view is the FOD and each of the
function in it is described by the smaller view of the SDT.

The AECL approach specifies all requirements of the
nuclear control system in the FOD and SDT notations. This
is somewhat complex in cases where timing requirements
and history related requirements are considered. This
difficulty of specification is modified in our approach,
which is discussed later on in this paper.

An FOD is a similar notation to DFD (Data Flow
Diagram). However, it not only shows the data flows but
also hierarchies among the functions and the groups of
functions. The data values are also computed by the
dependencies between the data flow. The following Fig. 1 is
part of an FOD description of the SRS in the Wolsong
SDS2 (Shutdown System2)[3]. There are three nodes that
represent functions, arrows that show the flow of

input/output data and s_PDLCond that is a state variable.
Other notations include inputs and outputs from the
computer system described in rectangles and timing
functions described in vertical bars.

Fig. 1 FOD

The notation to specify the lowest level, a function, is the

SDT which is an AND_OR table. The required behavior of
each function is described in a tabular notation as shown
below. Fig. 2 is the SDT for the function f_PDLCond
specified in Fig. 1 with the details of the SDT included.

Fig. 2 SDT of f_PDLCond

In Fig. 2, the function f_PDLCond produces either output
k_CondOut or k_CondIn depending on the condition
statements in the SDT. The condition statements are AND
related. For example, in the first column of the SDT, if the
condition m_PDLCond=k_CondSwLo is true and if the
condition w_FlogPDLCondLo[f_Flog] satisfies the
condition macro ‘a’, then the function f_PDLCond
produces the output k_CondOut which can be seen in the
related action statements.

3. The Proposed Approach
The proposed approach is an extended formal verification
method of the existing SCR-style AECL approach. The
specification approach was originally designed to simplify

the complex specification techniques of certain
requirements in the AECL approach. It is an improved
method in describing behavior of the history related
requirements and timing requirements of the nuclear control
system by specifying them in automata and timed-automata
respectively. In the existing AECL method, all
specifications including history related requirements and
timing requirements are specified with only one type of
function node in the FOD and with SDT tables. However,
our approach uses three different types of nodes in the FOD
to specify the properties derived from the requirements. The
types consist of nodes that specify history related
requirements that are described in automata[4], timing
requirements that are described in timed-automata[5], and
nodes that specify all other requirements exclusive of the
previous two types of functional requirements.

3.1 Specifying History Related Requirements
The history related requirement of the system is the
specification of the previous state or value that a function or
functions must have before the next transition can occur.
For example, in the FOD of the AECL approach in Fig. 1,
the previous state of the function f_PDLCond is
s_PDLCond, which is shown with two horizontal bars
beneath the f_PDLCond node. This requirement is shown in
Fig.2 on the fourth row of the condition statements.
However, our approach introduces a much simpler way by
using automata to describe the history related behaviors that
are difficult to specify with functions as did in the AECL
approach. The following Fig. 3 is the automata of the
function f_PDLCond in Fig.1 and Fig 2 described in the
proposed approach.

Fig. 3 Automata Description for f_PDLCond

The conditions required to go to k_CondOut state or
k_CondIn state and the action that occurs when the
conditions are satisfied, are shown with the corresponding
transition.

3.2 Specifying Timing Requirements
Functional timing specifications represent timing
requirements that are an integral part of the actual function.
An example of a time related functional requirement is that
“function must maintain a light ‘on’ for ten seconds before
the activator goes off”. The timing interval would then be
ten seconds. The proposed approach describes the timer
function in timed automata instead of the complex timer
function used in the AECL approach shown in Fig. 4.
Vertical bars are timing functions, s_pending is the state
function and t_Pending is a timing function for describing
the time delay. t_Trip is also a timing function for
describing the required trip duration and f_PDLDly is a

CONDITION STATEMENTS
m_PDLCond=k_CondSwLo T T T T F F F F
w_FlogPDLCondLo[f_Flog] a b b c - - - -
w_FlogPDLCondHi[f_Flog] - - - - a b b c
s_PDLCond=k_CondOut - T F - - T F -
ACTION STATEMENTS
f_PDLCond=k_CondOut X X X X
f_PDLCond=k_CondIn X X X X

function with history requirements.

Fig. 4 Timing specifications in FOD AECL approach

Timing and history related requirements as this must be
clearly stated in the SRS. Fig. 4 uses only one type of node
to define all requirements. However, in the FOD below, the
timing and history related requirements which is specified
in the box of Fig. 4 is specified into one type of node, the
th_PDLDly function node. The “th_” is for the timed-
history node.

Fig. 5 FOD in the proposed approach

The following Fig. 6 is the completed timed-automata
obtained from the requirements specification of the FOD in
Fig. 5 and from the related SDT specification.

Fig. 6 Timed-Automata

3.3 Verification
Verifying the properties of the nuclear system is very time
consuming and takes much effort using the existing AECL
approach. However, our approach allows the SRS of the
nuclear control system to be verified in an automated
environment. The SRS in the proposed approach is
converted into XML, which a converting tool automatically
transforms into PVS specification language. The translated
specification is then verified with the PVS theorem
prover[6].

3.4 The Editor
The Editor for our approach is a platform independent tool
made with JAVA for formally specifying the SRS of the
nuclear control system. It provides environment to draw
FOD and SDT and allows automata diagrams to be built
from the nodes of the FOD. The Editor also gives a
hierarchical view of the SRS described as can be seen on
the left side of Fig.7.

Fig. 7 Editor

4. Conclusions and Future Work
We have presented a formal specification method which is
simple yet more suitable for specifying software
requirements of nuclear control systems. First, we have
described that our approach is based on the existing AECL
approach with better techniques for specifying history and
timed related properties that are the main motivation for
designing the proposed approach. Second, we have shown
that verifying the properties derived from the system
requirements can be done more easily using the PVS
theorem proving in the given environment.

There are possible directions that the proposed approach
can be developed toward for future work. It will be
extended so that verification of the specification can be
done with model checking using SMV or SPIN. Our
approach will be developed further on so that it will be a
more complete approach in specifying the requirements of
the safety-critical nuclear control system.

References
[1] WolsongnNPP 2/3/4, “Software Verification Report Code

Verification, SDS2 PDC,” Design Document no. 86-68350-
SVR-002, Rev. 0, June 1994.

[2] WolsongnNPP 2/3/4, “Software Work Practice Procedure for
the Specification of SR for Safety Critical Systems,” Design
Document no. 00-68000-SWP-002, Rev. 0, Sept. 1991.

[3] WolsongnNPP 2/3/4, “Software Requirements
Specification for Shutdown Systems 2 PDC,” Design Document
no. 86-68350-SRS-001, Rev. 0, June 1993.

[4] J. Hopcroft and J. Ullman, “Introduction to Automata Theory,”
Language and Computation, Addison-Wesley, 1979.

[5] R. Alur and David L. Dill, “A theory of Timed Automata,”
Theoretical Computer Science Vol. 126, No. 2, pp. 183-236,
April 1994.

[6] T. Kim, D. Stringer-Calvert, and S. Cha, “Formal Verification
of Functional Properties of an SCR-Style Software
Requirements Specification Using PVS,” TACAS 2002, LNCS
2280, pp. 205-220, 2002.

