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Abstract

This article describes NuSCR, a formal software requirements specification method for dig-
ital plant protection system in nuclear power plants. NuSCR improves the readability and
specifiability by supplying different notations on the basis of the typical operation categories.
The characteristics of the software process controller in nuclear power plants, s.t. periodic
sequential processing and classifiable operations, makes this possible. We introduce the syn-
tax and semantics of NuSCR in the paper. An ATWS mitigation system in Korean nuclear
power plant is used as a case study to illustrate the usefulness of NuSCR.

1 Introduction

Software safety is an important property for safety critical systems, especially those in aerospace,
satellite and nuclear power plants, whose failure could result in danger to human life, property or
environment. It is recently becoming more important due to the increase in the complexity and
size of safety critical systems [9]. Formal software requirements specification is known as a means
to increase the safety of such safety critical systems in the early phase of software development
process. It guides the developer to specify all requirements explicitly without any assumptions or
omissions. Also many recognized formal verification methods, such as model checking [2] [3] and
mechanized theorem proving [21], can be applied to the formal software requirements specification.

In the area of nuclear power plant systems, the formal specification of software requirements
becomes more important with the replacement of existing analog systems by digital systems com-
posed of software process controllers [12]. Nowadays, software requirements and design specifica-
tions which are suitable for the characteristics of nuclear power plants system, are becoming new
research issues by many researcher as the Practical Formal Specification(PFS) project in aerospace
applications[11].

Typical characteristics of digital protection controllers in nuclear power plant systems are as
follows. First, numerous inputs are calculated by the software process controllers. To maintain
the system to be safe, all the status of reactors and peripherals, i.e. turbines, steam generators,
and other subsystems, should keep being observed. Second, the software operates sequentially,
s.t. receives software inputs, calculates with them, and then emits software outputs. It repeats
the sequential operation periodically at every predefined time interval. Last of all, all the pos-
sible operations of the software process controller can be classified into three categories. They
are function-based, state-based, and timing-based operations. Function-based operations are the
functions that gets inputs, calculates with inputs only, and then emits an output. State-based
operations are the operations that require the history information additionally. Timing-based op-
erations are the ones which require timing constraints in addition to the history information.

NuSCR is a formal software requirements specification extended from SCR(Software Cost Reduc-
tion) [5] to easily specify the functional requirements of safety critical software, especially those
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of nuclear power plants. It is based on Parnas’ Four-Variable Model [13] and uses FOD(Function
Overview Diagram) for the overview of data flows in the same way as [22]. [22] is a variant of
SCR, which was proposed by AECL(Atomic Energy of Canada Limited) and was used for the for-
mal software requirements specification for SDS2(ShutDown System 2) in Wolsong nuclear power
plant in Korea. NuSCR improves the readability and specifying ability by supplying different
notations on the basis of their typical operation categories. The characteristics of software process
controllers in nuclear power plants, s.t. periodic sequential processing and classifiable operations,
makes this possible.

In the approach of AECL, the state-based operations such as trip set point hysterisis are specified
by functions, although they have originally state-based features. It is because that the basic spec-
ifying concept of AECL approach is to specify all aspects by functions. Timing-based operations
such as delay timer are also specified by special timer functions, which are too hard to define and
understand. In NuSCR, we adopts FSM(Finite State Machine) for specifying state-based parts,
and a kind of TTS(Timed Transition System)[18] for timing-related parts in software requirements.

NuSCR formal software requirements specifications can be verified by theorem prover PVS [15]
with our approach [7] developed for SCR. Using PVS, we can verify the structural properties such
as input/output completeness, consistency, and circular dependencies in NuSCR specification.
NuSCR specifications can also be verified by model checker such as the SMV [10], based on the
formal semantics of NuSCR presented in this paper. We are developing an automatic translator
that translates NuSCR specification into SMV inputs.

The remainder of the paper is organized as follows: Section 2 reviews SCR and the variant
proposed by AECL. Section 3 introduces the specification constructs in NuSCR. In Section 4, we
represent the formal semantics of NuSCR software requirement specifications. We then briefly
introduce NuSCR requirements specification for AMS(ATWS Mitigation System) as a case study,
and describe the software development environment in progress in Section 5. Conclusion and
future work direction are in Section 6.

2 Formal Requirements Specification Approaches

Some formal requirements specification methods such as Z [16], VDM [6], and Larch [4] focus on
specifying the behavior of sequential systems. These approaches use rich mathematical structures
like sets, relations, and functions to describe states and use pre-conditions and post-conditions for
state transitions. However, these approaches are too expressive to specify nuclear power plants
software concisely.

SCR [5] was introduced more than twenty years ago to specify the software requirements of
real-time embedded systems. Recently it has been extended to incorporate both functional and
non-functional(e.g. timing and accuracy) requirements [14], [1]. As it was designed to be used by
engineers, the SCR methods has been successfully applied to a variety of practical systems, such
as the A-7 Operational Flight Program [17], submarine communication system, and safety-critical
component of Darlington nuclear power plant in Canada [1].

The approach [1] applied to the Darlington nuclear power plant by AECL is the first attempt
as the formal software requirements specification for nuclear power plants system and it was also
applied to SDS2(ShutDown System 2) in Wolsong nuclear power plant in Korea [23]. The ap-
proach is based on SCR and has some extensions from SCR. At first, to specify the software more
concisely, it combined the three tables of SCR, the mode transition table, event table, and condi-
tion table, into a table called SDT(Structured Decision Table). It uses FOD(Function Overview
Diagram) which is similar to DFD(Data Flow Diagram) for the overview of the system. Finally,
it provides sophisticated functions for describing precision and tolerance to describe timing con-
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straints.

The characteristics of AECL approach is as follows: (i) SDTs and FODs are familiar notations
for domain engineers and developers. (ii) However, SDTs are too complicated. There usually are
too many columns and rows to understand. The complexity of SDTs comes from the basic idea
of the AECL approach. Although they originally have state-based features, the function form of
them makes unnecessary complication arise. (iii) Managements of time-related feature such as
timers are too complicated to define and understand. They use the special timing functions for
specifying time-related requirements. However the definition of them is too hard to be known by
common domain engineers by intuition.

3 NuSCR Software Requirements Specification Constructs

NuSCR basically uses four constructs, monitored variable, input variable, output variable, and con-
trolled variable according to Parnas’ Four-Variable Model [10]. In addition, to specify the relations
of Parnas’ Four-Variable Model in practical and domain dependent manners, we introduce three
other basic constructs, function variable, history variable, and timed history variable. These three
constructs can be defined as SDT, FSM, and TTS respectively. The relationship of all constructs
is represented by FOD.

Naming Convention NuSCR uses the prefix naming convention as follows to distinguish each
construct efficiently. Two prefixes, ”g ” and ”k ”, are introduced for the convenience of specifica-
tion:

• m : monitored variable

• i : input variable

• f : function variable

• h : history variable

• th : timed history variable

• g : set of function variable, history variable, or timed history variable

• k : predefined constant

• o : output variable

• c : controlled variable

System Entities System entities constructing NuSCR software requirements specification are
defined as follows:

• VI : a set of system input variables

• VF : a set of function variables

• VH : a set of history variables

• VTH : a set of timed history variables

• VO : a set of system output variables

• VSE :
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– a set of system entities

– VI ∪ VF ∪ VH ∪ VTH ∪ VO

• DSE : a set of all possible domain for every r in VSE

• σ : a valuation function that maps VSE into DSE

– σ[d/v] means that (let v ∈ VSE , Vv = VSE - {v}, d ∈ DSE)
σ

′
[v] = d and σ

′
[Vv] = σ[Vv]

– σ(f(v)) = f(σ[v]) = f(v)(σ)

Condition Statements Condition statements are the predicates on the value of all entities in
SE. The condition statements in NuSCR are defined as BNF form as follows:

Let r ∈ VSE , vr ∈ DSE, a, b ∈ N , and ⊗ ∈ {=, �=,≤, <,≥, >},
simple condition := r ⊗ vr | r ⊗ r | TRUE | FALSE
complex condition := simple condition ∧ simple condition

| simple condition ∨ simple condition | ¬simple condition | simple condition
timed condition := [a, b]complex condition

As the above definition, timed condition is a complex condition appended by the timing constraints
[a, b] which means a duration of time a and b. timed condition is used in defining timed history
variables, and complex condition is used in defining both function variables and history variables.

Assignment Statements Assignment statements mean the valuation of entities in SE. The
assignment statements in NuSCR are defined as BNF form as follows:

Let r ∈ VSE , vr ∈ DSE, a, b ∈ N , and ⊕ ∈ {+,−, ∗,÷}
assignment := (r := vr) | (r := r) | (r := r ⊕ r) | (r := r ⊕ vr)

Function Variable Function variables are used for specifying the mathematical functional be-
havior of a system. They are defined as SDTs. SDT is a kind of Condition/Action table, which rep-
resents the actions(assignment statements) performed if their guiding conditions(condition state-
ments) are satisfied. Tabular notations such as SDTs have the merit of being familiar to engineers
and developers. Conditions in SDT are the complex conditions with the inputs of the function
variable. Actions are the assignment to the function variable itself.

Conditions   

th_CH1_TICP_TRIP_Status = k_CH1_TICP_TRIP  T  F 

th_CH1_TICP_TRIP_Status = k_CH1_TICP_NORMAL  F  T  

   

    Actions   

f_OC1_TICP_BL_I := f_OC1_TICP_I * 100  X   

f_OC1_TICP_BL_I := f_OC1_TICP_I * 10   X  

 

Figure 1: Structured decision table for f OC1 TICP BL I
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〈Fig. 1〉 is an SDT defining function variable f OC1 TICP BL I. It is excerpted from NuSCR soft-
ware requirements specification for AMS[20]. Input entities for this variable are th CH1 TICP TRIP STATUS

and f OC1 TICP I. The detailed interpretation of such definition is as follows:

If th CH1 TICP TRIP STATUS is same as k CH1 TICP TRIP and not same as k CH1 TICP NORMAL,
then the new value for f OC1 TICP BP I

is f OC1 TICP I multiplied by 100. Else if th CH1 TICP TRIP STATUS is same as
k CH1 TICP NORMAL and not same as k CH1 TICP TRIP, then the new value for
f OC1 TICP BP I is f OC1 TICP I multiplied by 10.

History Variable History variables are used for specifying the state-based behavior of a system.
They are defined as FSMs. FSM consists of finite number of states, transitions between states,
and labels on each transition. Labels are the Conditions/Actions statements which are same as
that of SDTs. Conditions in FSM’s transition labels are the complex conditions with the inputs
of the history variable. Actions are the assignment to the history variable itself. If the transition
condition is satisfied in the current state, then the action is performed and the state transition
occurs.

NORMAL
TRIP

th_CH1_TICP_TRIP_STATUS = k_CH1_TICP_TRIP
 / h_OC1_TICP_SP_I := f_OC1_TICP_SP_S - k_TICP_HYS_SP

th_CH1_TICP_TRIP_STATUS = k_CH1_TICP_NORMAL
/ h_OC1_TICP_SP_I := f_OC1_TICP_SP_S + k_TICP_HYS_SP

Figure 2: Finite state machine for h OC1 TICP SP I

〈Fig. 2〉 is a FSM defining history variable h OC1 TICP SP I. Input entity for this variable is
th CH1 TICP TRIP STATUS and the initial state is NORMAL. The detailed interpretation of such
definition is as follows:

In state NORMAL, if th CH1 TICP TRIP STATUS is same as k CH1 TICP TRIP, then
the new value for h OC1 TICP SP I is h OC1 TICP SP S minus k TICP HYS SP and
transition to state TRIP occurs. Also in state TRIP, if th CH1 TICP TRIP STATUS is
same as k CH1 TICP NORMAL, then the new value for h OC1 TICP SP I is h OC1 TICP SP S

plus k TICP HYS SP and transition to state NORMAL occurs.

Timed History Variable Timed history variables are used for specifying the time-related
behavior of system. They are defined as a kind of TTS [18]. TTS is a FSM extended with the
timing constrains [a, b] in transition conditions. [a, b] means the time duration between time a and
b.
〈Fig. 3〉 is a TTS defining timed history variable th CH1 TICP TRIP STATUS. Input entities
for this variable are f OC1 TICP I and h OC1 TICP SP S and the initial state is NORMAL. The
detailed interpretation of such definition is as follows:
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NORMAL TRIP

f_OC1_TICP_l > f_OC1_TICP_SP_S

[10, 10] f_OC1_TICP_l >= f_OC1_TICP_SP_S
/ th_CH1_TICP_TRIP_STATUS := k_CH1_TICP_TRIP

WAITING

f_OC1_TICP_l < f_OC1_TICP_SP_S
/ th_CH1_TICP_TRIP_STATUS := k_CH1_TICP_NORAML

f_OC1_TICP_l < f_OC1_TICP_SP_S
/ th_CH1_TICP_TRIP_STATUS := k_CH1_TICP_NORAML

Figure 3: Timed transition system for th CH1 TICP TRIP STATUS

In state NORMAL, if f OC1 TICP I is greater than h OC1 TICP SP S, then immediate
transition to state WAITING occurs and the output value is same as the previous one.
If the condition is satisfied for 10 seconds from the point entering state WAITING,
then the new value for th CH1 TICP TRIP STATUS is k CH1 TICP TRIP and transi-
tion to state TRIP occurs. Else if the condition is not satisfied for 10 seconds from
the point entering state WAITING, then the new value for th CH1 TICP TRIP STATUS

is k CH1 TICP NORMAL and transition to state NORMAL occurs. In state TRIP, if
f OC1 TICP I is less than h OC1 TICP SP S, then immediate transition to state NOR-

MAL occurs and the new value for th CH1 TICP TRIP STATUS is k CH1 TICP NORMAL.

Function Overview Diagram FOD(Function Overview Diagram) is a kind of DFD, which
describes the relationship between constructs in VSE in NuSCR software requirements specifica-
tion. Each construct in VSE is represented by specific nodes, and the relationship between them is
represented by unidirectional arrows. FOD is composed hierarchically and in this case the group
nodes are used. The name of each node is followed by the prefix naming convention described
above.
〈Fig. 4〉 is a FOD for group node g Bistable Logic. It is composed of three group nodes g Rising Trip,
g Falling Trip, and g Digital Trip. As shown in (a), the group node g Rising Trip has f OC1 TICP I

and f OC1 TICP BP S as input entities. The output of g Rising Trip are f OC1 TICP BL I, th CH1

TICP TRIP STATUS, and h OC1 TICP SP I. The refined FOD is represented in (b). It is composed
of three nodes which have corresponding outputs repsectively. The relationship between these three
nodes are represented by arrows.

4 Semantics for NuSCR

The behavior of software system specified by NuSCR can be defined based on the behavior of
FOD.

Function Overview Diagram FOD in NuSCR is defined as a tuple:

FOD = 〈 N , T , I, O 〉
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f_OC1_TICP_
BL_I

th_CH1_TICP_TRIP_STATUS

f_OC1_TICP_l

h_OC1_TICP_SP_I

f_OC1_TICP_BL_I

th_CH1_TICP_T
RIP_STATUS

h_OC1_TICP_
SP_I

f_OC1_TICP_SP_S

g_Rising Trip

g_Falling_Trip

g_Digital_Trip

h_OC1_TICP_SP_l

f_OC1_TICP_l

f_OC1_SG1L_l

f_OC1_SG2L_l

f_OC1_MTEST_TICP_l

f_OC1_MTEST_SG1L_l

f_OC1_MTEST_SG2L_l

th_CH1_TICP_TRIP_STATUS*

f_OC1_TICP_BL_I

th_CH1_SG1L_TRIP_STATUS*

h_OC1_SG1L_SP_l

f_OC1_SG1L_BL_l

th_CH1_SG2L_TRIP_STATUS*

h_OC1_SG2L_SP_l

f_OC1_SG2L_BL_l

f_CH1_MT_INIT_STATUS*

f_OC1_MT_BL_l

Coincidence Logic

Operational Panel

f_OC1_TICP_SP_S

f_OC1_SG1L_SP_S

f_OC1_SG2L_SP_S

(a) g_Bistable_Logic

(b) g_Rising_Trip

Figure 4: Function overview diagram for g Rising Trip
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• N

– a set of all function nodes in FOD

– all nodes in VF and VH and VTH are defined as functions

• T

– a set of transition (n1, n2) between all nodes n1, n2 in N

– ∀ t = (n1, n2) ∈ T , n1 has a precedence on n2

• I

– a set of input values into FOD

– It is mapped into input variables VI of FOD

• O

– a set of output values from FOD

– It is mapped into output variables VO of FOD

From the definition of FOD above, FOD can be defined as a function fFOD from input values I
to output values O. Also as all nodes in N have partial ordering according to the transition in T
and all nodes are defined as functions, fFOD can be represented as a function composition of all
nodes in N according to the partial orders on their precedence.

fFOD(σ[I/VI ]) = σ[O/VO ]
fFOD = (mathematical function composition by partial orders on their precedence)

Function Variable Node Function variable in NuSCR is represented by a function variable
node in FOD. It is defined by SDT. Let IFV be the set of input values from other nodes in FOD
into the function variable node itself. Let OFV be the set of output values from this node. They
can be mapped into the set of variables, VFI and VFO respectively. Then complex conditions in
SDT are the predicate on VFI , and actions are the assignments on VFO which is the function
variable itself.

SDT is defined as a set of a pair (p, a), where p ∈ P and a ∈ A. P is a set of boolean predicates
on VFI , which is the conjunction of complex conditions in condition statements and corresponding
boolean conditions. A is a set of assignments to VFO which is just the function variable itself.

SDT : a set of pair (p, a)

• p ∈ P and a ∈ A

• ∀ (p, a) in SDT , p(σ) = T then a(σ) = σ[OFV /VFO] = σ
′

For example, SDT in 〈Fig. 5〉 can be defined as follows:

SDT = {(Cond1 = T ∧ Cond2 = F , Assign1), (Cond2 = T ∧ Cond3 = F , Assign2), (Cond1 = T
∧ Cond3 = T , Assign3)}
From the definition of SDT above, a function variable node can be defined as a function fFV with
input values IFV to output values OFV as follows.
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Conditions     
Cond1 T - T 
Cond2 F T - 
Cond3 - F T 
    
    Actions    
Assign1  X   
Assign2  X  
Assign3   X 
 

Figure 5: Structured decision table for a function variable

fFV (IFV ) = σ[IFV /VFI ] = OFV

History Variable Node History variable in NuSCR is represented by a history variable node in
FOD. It is defined by FSM which is composed of states, transitions between states, and labels on
transitions. Let IHV be the set of input values from other nodes in FOD into the history variable
node. Let OHV be the set of output values from this node. They can be mapped into the set of
variables, VHI and VHO respectively. Then complex conditions in FSM are the predicate on VHI

and actions are the assignments on VHV which is the history variable itself. FSM can be defined
as a relation described below:

FSM = 〈 SH , s0, C, A, R 〉
• SH : a set of states in history variable node

• s0 : initial state in SH

• C : a set of complex conditions

• A : a set of assignments

• R :

– SH × C × A × SH is a transition relation

– ∀ r (s, c, a, s
′
) in R,

s.t. current state = s and c(σ) = T then a(σ) = σ[OHV /VHO]= σ
′

current state in the definition above means the variable in CSH , which indicates the current state
of the history node. It will be used in the definition of the overall NuSCR system. History variable
in 〈Fig. 6〉 can be defined as a relation as follows:

FSM = 〈SH , s0, C, A, R〉
SH = {S1, S2, S3}
s0 = S1

C = {Cond1, Cond2, Cond3, Cond4}
A = {Assign1, Assign2, Assign3, Assign4}
R = {(S1, Cond1, Assign1, S2), (S2, Cond3, Assign3, S1), (S2, Cond2, Assign2, S3),

(S3, Cond4, Assign4, S1)}
From the definition of FSM above, a history variable node can be defined as a function fHV from
input values IHV to output values OHV as follows.
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S
1

S
2

S
3

Cond1 / Assign 1

Cond
2
 / Assign

2

Cond
3
 / Assign

3

Cond
4
 / Assign

4

Figure 6: Finite state machine for history variable node

fHV (IHV ) = σ[IHV /VHI ] = OHV

Timed History Variable Node Timed history variable in NuSCR is represented by a timed
history variable node in FOD. It is defined by TTS which is a FSM extended with timing con-
strains [a, b] in transition labels. a and b means the minimum and maximum delay in the transition
respectively. Let ITHV be the set of input values from other nodes in FOD into the timed history
variable node. Let OTHV be the set of output values from this node. They can be mapped into
the set of variables, VTHI and VTHO respectively. Then timed conditions are the predicate on
VTHI and timing constrains [a, b], and actions are the assignment on VTHV which is the history
variable itself. TTS can be defined as a relation described below:

TTS = 〈 STH , s0, C, A, R 〉
• STH : a set of states in timed history variable node × lc, where lc is a local clock in LC

• s0 : initial state in STH

• C : a set of timed conditions

• A : a set of assignments

• R :

– STH × C × A × STH is a transition relation
– ∃ r (s, c, a, s

′
) in R,

s.t. current state = s and c(σ) = T then a(σ) = σ[OTHV /VTHO ] = σ
′

The behavior of transition relations in TTS is a little different from that of FSM because of the
timing constraints. For example, the transition from state S1 to S2 in 〈Fig. 7〉 has the transition
labeled with ”[a, b]Cond1/Assign1”. The minimum delay a means that when the control of timed
history node has resided at the location S1 for at least a time units during which the guard Cond1

has been continuously true, then the transition from S1 to S2 may occur. The maximum delay b
means that whenever the state of history variable has resided at S1 for b time units during which
the guard Cond1 has been continuously true, then the transition from S1 to S2 has to occur.
The behavior of this transition can be described as follows. ”lc := lc + 1” means the local time
progress and ”lc := 0” means the local clock initialization. current state is a variable in CSTH ,
which indicates the current state and the current local time.
For example, timed history variable in 〈Fig. 7〉 can be defined as a relation as follows:
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S
1

S
2

S
3

[a,b] Cond1 / Assign 1

[0,a] Cond2

/ Assign
2

[0,a] Cond
3

/ Assign3

Cond
4
 / Assign

4

Figure 7: Timed transition system for a timed history variable node

TTS = 〈STH , s0, C, A, R〉
STH = {(S1, lc), (S2, lc), (S3, lc)}
s0 = (S1, 0)
C = {[a, b]Cond1, [0, a]Cond2, [0, a]Cond3, Cond4}
A = {Assign1, Assign2, Assign3, Assign4}
R = {((S1, (a, b)), Cond1, Assign1, S2), ((S2, [0, a]), Cond3, Assign3, S1), ((S2, [0, a])Cond2,

Assign2, S3), ((S3,−), Cond4, Assign4, S1)}
From the definition of TTS above, a timed history variable node can be defined as a function
fTHV from input values ITHV to output values OTHV as follows.

fTHV (ITHV ) = σ[ITHV /VTHI ] = OTHV

Function fTHV generates an output(OTHV ) whenever it gets inputs(ITHV ) from other nodes
in FOD. If no conditions are satisfied, then the value of OTHV in the previous scan cycle is pre-
served. However, although it gets no inputs ITHV , the transition condition can be satisfied as the
local time proceeds. In nuclear power plants system, however, this situation can be avoided. It
is because system scan cycle time d is always much more smaller than the time a or b in timing
constraint [a, b]. (i.e. d is 50ms and delay time a is 5sec.) Of course, we need to adjust that a or
b are the multiple of d.

NuSCR Software System NuSCR software system is defined as a tuple

NSS = 〈 S, S0, R, d 〉 in which

• S

– a set of system states

– σ[VSE × CSH × CSTH ]

– CSH : a set of variables which indicate the current state of history nodes

– CSTH : a set of variables which indicate the current state and the current local time
of time history variable nodes

• S0 : initial state in S

• R : a set of transition relation S × I −→ S
′ × O
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• d : system scan cycle time in which the system get the changed valuation function σ peri-
odically

5 Case Study: AMS Example

In this section, we introduce NuSCR software requirements specification for AMS(ATWS Mitiga-
tion System) in Kori NPP Unit 1 in Korea [19], [20]. We also introduce our supporting tool for
NuSCR specification.

External Sensors

m_CH1_TICP

m_CH1_SG1L

m_CH1_SG2L

AMS

TBN A TBN B

AFWS A AFWS B

Channel 1

AFWS C AFWS D

TBN A TBN B

AFWS A AFWS B

AFWS C AFWS D

Channel 2

Operation Panel

IPMS Annunciator

IPMS Annunciator

AMS Channel 1

AMS Channel 2

Input
Validation

Logic
Module

Bistable
Logic

Module

Coincid-
ence
Logic

Module

Output
Logic

Module

Input
Validation

Logic
Module

Bistable
Logic

Module

Coincid-
ence
Logic

Module

Output
Logic

Module

Figure 8: Overview of AMS Subsystem

AMS Description The AMS provides its protective action to mitigate the effects occurring
followed by a failure of the reactor trip portion of the reactor trip system. It initiates a turbine
trip and actuates AFWS(Auxiliary Feed Water System). There are two turbines and four AFWSs
for each channel. The AMS also communicates some information with OP(Operational Panel),
IPMS(In Plant Monitoring System), and Annunciators(i.e. alarms). The AMS consists of two
identical channels containing Input/Output Module, Bistable Logic Module, and Coincidence Logic
Module. The AMS and its related subsystems are described in 〈Fig. 8〉 and the description of its
subsystems are as follows.

• Input Validation Logic Module : Input validation function converts the input parameters
from raw input value to scaled value and validates the scaled input parameter.

• Bistable Logic Module : Bistable logic function determines if a trip condition exists based
on measured parameters. Two types of bistable function are implemented, a fixed setpoint
and a contact input. The fixed setpoint function compares a programmed constant with a
digitized parameter to determine the trip state. The contact bistable function uses the state
of the input to establish the trip state.

• Coincidence Logic Module : The coincidence logic function uses the bistable trip states
generated internally from both channels to determine if a system initiation should occur.
This function generates a turbine trip signal and a AFWS actuation signal whenever a
coincidence of a low steam generator level trip or the manual trip has occurred.

• Output Logic Module : This logic shall obtain data from selected registers and send this
information to the Annunciator, the In-Plant Monitoring System and the AMS OP.
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Figure 9: g AMS Overview in NuSCR specification

NuSCR Specification for AMS We produced NuSCR specification for a channel of AMS from
[19] and [20]. 〈Fig. 9〉 depicts the g AMS Overview in NuSCR specifications, which is the root
node of FOD. It shows the overall data flows of AMS systems. It has 17 inputs and 64 outputs. In-
puts come from operation panel, external sensors, external hardware, and other channel. Outputs
are for IPMS, annunicators, operation panel, turbines, and AFWSs. It is identical to 〈Fig. 8〉. The
AMS consists of 4 subgroup nodes, g Input validation Logic, g Bistable Logic, g Coincidence Logic, and
g Output Logic.

The group node g Bistable Logic in 〈Fig. 9〉 is decomposed into three group nodes g Rising Trip,
g Falling Trip, and g Digital Trip as depicted in 〈Fig. 4(a)〉, and the group node g Bistable Logic is
decomposed as 〈Fig. 4(b)〉. Finally three nodes in g Rising Trip are defined using SDT, FSM, and
TTS respectively as 〈Fig. 1, 2, 3〉. As short of space, we introduce the part of AMS, g Rising Trip,
as a typical NuSCR specification.

NuSCR Specification Supporting Tools To be useful in developing practical systems, we
provide a robust and well-engineered tool, NuEditor, for specifying the NuSCR specification. In
NuEditor, simple properties s.t. completeness and consistency checking can be supported. Also
it produces the adequate PVS inputs to verify the structural properties such as input/output
completeness, consistency, and circular dependencies in NuSCR specification. It is based on our
technique in [7]. We are now developing an automatic translating procedure from NuSCR specifica-
tion into SMV inputs to verify further sophisticated properties. 〈Fig. 10〉 represents the NuEditor
we are developing. With this tool, we are going to specify the whole system of RPS(Reactor
Protection System), which is a core control process of nuclear power plant system, as a part of
KNICS [8] project in Korea.

6 Conclusion and Future Work

Software safety is an important property for safety critical systems and formal requirements spec-
ification is known as a means to the safety in the early phase of software development process.
Nowadays, in the area of nuclear power plants systems, the formal specification of software require-
ments is an urgent problem that needs to be solved right away with the replacement of existing
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Figure 10: NuEditor

analog systems by digital systems composed of software process controllers.

In this paper, we introduce NuSCR, a formal software requirements specification method for
digital protection system in nuclear power plants. NuSCR improves the readability and specify-
ing ability by supplying different notations on the basis of the typical operation categories. The
characteristics of the software process controller in nuclear power plants, s.t. periodic sequential
processing and classifiable operations, makes this possible. We introduce the syntax and formal se-
mantics of NuSCR to apply the recognized formal verification techniques to NuSCR specifications.

An ATWS mitigation system in Korean nuclear power plants is used as a case study to illus-
trate usefulness of our method. We also introduce the supporting tool, NuEditor, to be useful in
developing practical systems. With this tool, we will specify the whole system of RPS(Reactor
Protection System), which is a core control process of nuclear power plant system, as a part of
KNICS [8] project in Korea. We are also developing an automatic translating procedure from
NuSCR specification into SMV inputs to verify further sophisticated properties.
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