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Abstract

This article describes NuSCR, a formal software requirements specification method for dig-
ital plant protection system in nuclear power plants. NuSCR improves the readability and
specifiability by supplying different notations on the basis of the typical operation categories.
The characteristics of the software process controller in nuclear power plants, s.t. periodic
sequential processing and classifiable operations, makes this possible. We introduce the syn-
tax and semantics of NuSCR in the paper. An ATWS mitigation system in Korean nuclear
power plant is used as a case study to illustrate the usefulness of NuSCR.

1 Introduction

Software safety is an important property for safety critical systems, especially those in aerospace,
satellite and nuclear power plants, whose failure could result in danger to human life, property or
environment. It is recently becoming more important due to the increase in the complexity and
size of safety critical systems [9]. Formal software requirements specification is known as a means
to increase the safety of such safety critical systems in the early phase of software development
process. It guides the developer to specify all requirements explicitly without any assumptions or
omissions. Also many recognized formal verification methods, such as model checking [2] [3] and
mechanized theorem proving [21], can be applied to the formal software requirements specification.

In the area of nuclear power plant systems, the formal specification of software requirements
becomes more important with the replacement of existing analog systems by digital systems com-
posed of software process controllers [12]. Nowadays, software requirements and design specifica-
tions which are suitable for the characteristics of nuclear power plants system, are becoming new
research issues by many researcher as the Practical Formal Specification(PFS) project in aerospace
applications[11].

Typical characteristics of digital protection controllers in nuclear power plant systems are as
follows. First, numerous inputs are calculated by the software process controllers. To maintain
the system to be safe, all the status of reactors and peripherals, i.e. turbines, steam generators,
and other subsystems, should keep being observed. Second, the software operates sequentially,
s.t. receives software inputs, calculates with them, and then emits software outputs. It repeats
the sequential operation periodically at every predefined time interval. Last of all, all the pos-
sible operations of the software process controller can be classified into three categories. They
are function-based, state-based, and timing-based operations. Function-based operations are the
functions that gets inputs, calculates with inputs only, and then emits an output. State-based
operations are the operations that require the history information additionally. Timing-based op-
erations are the ones which require timing constraints in addition to the history information.

NuSCR is a formal software requirements specification extended from SCR(Software Cost Reduc-
tion) [5] to easily specify the functional requirements of safety critical software, especially those



of nuclear power plants. It is based on Parnas’ Four-Variable Model [13] and uses FOD(Function
Overview Diagram) for the overview of data flows in the same way as [22]. [22] is a variant of
SCR, which was proposed by AECL(Atomic Energy of Canada Limited) and was used for the for-
mal software requirements specification for SDS2(ShutDown System 2) in Wolsong nuclear power
plant in Korea. NuSCR improves the readability and specifying ability by supplying different
notations on the basis of their typical operation categories. The characteristics of software process
controllers in nuclear power plants, s.t. periodic sequential processing and classifiable operations,
makes this possible.

In the approach of AECL, the state-based operations such as trip set point hysterisis are specified
by functions, although they have originally state-based features. It is because that the basic spec-
ifying concept of AECL approach is to specify all aspects by functions. Timing-based operations
such as delay timer are also specified by special timer functions, which are too hard to define and
understand. In NuSCR, we adopts FSM(Finite State Machine) for specifying state-based parts,
and a kind of TTS(Timed Transition System)[18] for timing-related parts in software requirements.

NuSCR formal software requirements specifications can be verified by theorem prover PVS [15]
with our approach [7] developed for SCR. Using PVS, we can verify the structural properties such
as input/output completeness, consistency, and circular dependencies in NuSCR specification.
NuSCR specifications can also be verified by model checker such as the SMV [10], based on the
formal semantics of NuSCR presented in this paper. We are developing an automatic translator
that translates NuSCR specification into SMV inputs.

The remainder of the paper is organized as follows: Section 2 reviews SCR and the variant
proposed by AECL. Section 3 introduces the specification constructs in NuSCR. In Section 4, we
represent the formal semantics of NuSCR software requirement specifications. We then briefly
introduce NuSCR requirements specification for AMS(ATWS Mitigation System) as a case study,
and describe the software development environment in progress in Section 5. Conclusion and
future work direction are in Section 6.

2 Formal Requirements Specification Approaches

Some formal requirements specification methods such as Z [16], VDM [6], and Larch [4] focus on
specifying the behavior of sequential systems. These approaches use rich mathematical structures
like sets, relations, and functions to describe states and use pre-conditions and post-conditions for
state transitions. However, these approaches are too expressive to specify nuclear power plants
software concisely.

SCR [5] was introduced more than twenty years ago to specify the software requirements of
real-time embedded systems. Recently it has been extended to incorporate both functional and
non-functional(e.g. timing and accuracy) requirements [14], [1]. As it was designed to be used by
engineers, the SCR methods has been successfully applied to a variety of practical systems, such
as the A-7 Operational Flight Program [17], submarine communication system, and safety-critical
component of Darlington nuclear power plant in Canada [1].

The approach [1] applied to the Darlington nuclear power plant by AECL is the first attempt
as the formal software requirements specification for nuclear power plants system and it was also
applied to SDS2(ShutDown System 2) in Wolsong nuclear power plant in Korea [23]. The ap-
proach is based on SCR and has some extensions from SCR. At first, to specify the software more
concisely, it combined the three tables of SCR, the mode transition table, event table, and condi-
tion table, into a table called SDT(Structured Decision Table). It uses FOD(Function Overview
Diagram) which is similar to DFD(Data Flow Diagram) for the overview of the system. Finally,
it provides sophisticated functions for describing precision and tolerance to describe timing con-



straints.

The characteristics of AECL approach is as follows: (i) SDTs and FODs are familiar notations
for domain engineers and developers. (ii) However, SDTs are too complicated. There usually are
too many columns and rows to understand. The complexity of SDTs comes from the basic idea
of the AECL approach. Although they originally have state-based features, the function form of
them makes unnecessary complication arise. (iii) Managements of time-related feature such as
timers are too complicated to define and understand. They use the special timing functions for
specifying time-related requirements. However the definition of them is too hard to be known by
common domain engineers by intuition.

3 NuSCR Software Requirements Specification Constructs

NuSCR basically uses four constructs, monitored variable, input variable, output variable, and con-
trolled variable according to Parnas’ Four-Variable Model[10]. In addition, to specify the relations
of Parnas’ Four-Variable Model in practical and domain dependent manners, we introduce three
other basic constructs, function variable, history variable, and timed history variable. These three
constructs can be defined as SDT, FSM, and TTS respectively. The relationship of all constructs
is represented by FOD.

Naming Convention NuSCR uses the prefix naming convention as follows to distinguish each
construct efficiently. Two prefixes, ”¢.” and ”k_”, are introduced for the convenience of specifica-
tion:

e m_: monitored variable

e i_: input variable

e f : function variable

e h_: history variable

e th_: timed history variable

e ¢_: set of function variable, history variable, or timed history variable
e [_: predefined constant

e o_: output variable

e c_: controlled variable

System Entities System entities constructing NuSCR software requirements specification are
defined as follows:

e V7 : a set of system input variables

e Vi : a set of function variables

Vi : a set of history variables
e Vrp . aset of timed history variables
e Vo : a set of system output variables

o Vog :



— a set of system entities
- ViuVr U Vg UVrg UVp

e Dgp : a set of all possible domain for every r in Vgg
e o0 : a valuation function that maps Vgg into Dgg

— o[d/v] means that (let v € Vgg, V,, = Vgg - {v}, d € Dgg)
o [v] = dand o' [V,] = o[V,

= o(f(v) = folv]) = f(v)(0)

Condition Statements Condition statements are the predicates on the value of all entities in
SE. The condition statements in NuSCR are defined as BNF form as follows:

Let r € Vgg, v, € Dgg, a,b € N, and ® € {=,#,<,<,>, >},
simple_condition :=r @uv, |r®@r | TRUE | FALSE
complex_condition := simple_condition N simple_condition
| simple_condition V simple_condition | —simple_condition | simple_condition
timed_condition := [a, blcomplex_condition

As the above definition, timed_condition is a complez_condition appended by the timing constraints
[a, b] which means a duration of time a and b. timed_condition is used in defining timed history
variables, and complex_condition is used in defining both function variables and history variables.

Assignment Statements Assignment statements mean the valuation of entities in SE. The
assignment statements in NuSCR are defined as BNF form as follows:

Let r € Vgg, v, € Dgg, a,b € N, and @ € {+, —,*,+}
assignment .= (r:=uv.) | (r:=r) | (r:=r&r)| (r:=rduv)

Function Variable Function variables are used for specifying the mathematical functional be-
havior of a system. They are defined as SDTs. SDT is a kind of Condition/Action table, which rep-
resents the actions(assignment statements) performed if their guiding conditions(condition state-
ments) are satisfied. Tabular notations such as SDTs have the merit of being familiar to engineers
and developers. Conditions in SDT are the complez_conditions with the inputs of the function
variable. Actions are the assignment to the function variable itself.

Condi tions
th_CHL_TICP_TRIP_Status = k_CHL_TICP_TRI P T F
th_CHL_TICP_TRI P_Status = k_CHL_TI CP_NORVAL F
Actions
f_OCL_TICP_BL_I :=f_OCL_TICP_I * 100 X
f OCL_TICPBL | :=f _OCL TICP I * 10 X

Figure 1: Structured decision table for fOC1_-TICP_BL_T



(Fig. 1) is an SDT defining function variable f.OC1_TICP_BL_I. Tt is excerpted from NuSCR soft-
ware requirements specification for AMS[20]. Input entities for this variable are th.CH1_TICP_TRIP_-STATUS
and f.OC1_-TICP_I. The detailed interpretation of such definition is as follows:

If th.CH1_TICP-TRIP_STATUS is same as k-CH1_TICP-TRIP and not same as k.CH1_-TICP_.NORMAL,
then the new value for fOCI_TICP_BP_I

is fOCI_TICP_I multiplied by 100. Else if th.CHI_TICP_-TRIP_.STATUS is same as
k_.CHI_TICP_.NORMAL and not same as k.CHI_TICP_TRIP, then the new value for
f-OCI1_TICP_BP-I is f OC1_-TICP-I multiplied by 10.

History Variable History variables are used for specifying the state-based behavior of a system.
They are defined as FSMs. FSM consists of finite number of states, transitions between states,
and labels on each transition. Labels are the Conditions/Actions statements which are same as
that of SDTs. Conditions in FSM’s transition labels are the complex_conditions with the inputs
of the history variable. Actions are the assignment to the history variable itself. If the transition
condition is satisfied in the current state, then the action is performed and the state transition
occurs.

th_CH1_TICP_TRIP_STATUS = k_CH1_TICP_TRIP
/h_OC1_TICP_SP_| :=f_OC1_TICP_SP_S - k_TICP_HYS_SP

th_CH1_TICP_TRIP_STATUS = k_CH1_TICP_NORMAL
/h_OC1_TICP_SP_| :=f_OC1_TICP_SP_S + k_TICP_HYS_SP

Figure 2: Finite state machine for h-OC1_TICP_SP_I

(Fig. 2) is a FSM defining history variable h-OC1_TICP_SP_I. Input entity for this variable is
th.CH1_TICP_TRIP_STATUS and the initial state is NORMAL. The detailed interpretation of such
definition is as follows:

In state NORMAL, if th.CHI_TICP_.TRIP_-STATUS is same as k_.CHI_TICP_TRIP, then

the new value for h.OCI_TICP_SP_I is h-OC1_TICP_SP_S minus k_.TICP_HYS_SP and
transition to state TRIP occurs. Also in state TRIP, if th.CH1-TICP-.TRIP_.STATUS is
same as k.CH1_TICP_.NORMAL, then the new value for h.OC1_TICP_SP_I is h.OC1_TICP_SP_S
plus k- TICP_HYS_SP and transition to state NORMAL occurs.

Timed History Variable Timed history variables are used for specifying the time-related
behavior of system. They are defined as a kind of TTS [18]. TTS is a FSM extended with the
timing constrains [a, b] in transition conditions. [a,b] means the time duration between time a and
b.

(Fig. 3) is a TTS defining timed history variable th.CH1_TICP_-TRIP_STATUS. Input entities
for this variable are f OCI1_TICP_I and h_.OC1_TICP_SP_S and the initial state is NORMAL. The
detailed interpretation of such definition is as follows:



[10, 10] f_OC1_TICP_| >= f_ OC1_TICP_SP_S
f OCL TICP |>f OCL TICP SP S /th_CH1_TICP_TRIP_STATUS := k_CH1_TICP_TRIP

f_OC1_TICP_| <f_OC1_TICP_SP_S
/th_CH1_TICP_TRIP_STATUS := k_CH1_TICP_NORAML

Figure 3: Timed transition system for th.CH1_TICP_-TRIP_STATUS

In state NORMAL, if f-OC1_TICP_I is greater than h-OCI_TICP_SP_S, then immediate
transition to state WAITING occurs and the output value is same as the previous one.
If the condition is satisfied for 10 seconds from the point entering state WAITING,
then the new value for th-CHI1_TICP_-TRIP_.STATUS is k.CH1_-TICP_-TRIP and transi-
tion to state TRIP occurs. Else if the condition is not satisfied for 10 seconds from
the point entering state WAITING, then the new value for th.CH1_TICP_-TRIP_.STATUS
is k. CHI_TICP_NORMAL and transition to state NORMAL occurs. In state TRIP, if
f-OCI1_TICP_I is less than h-OCI_TICP_SP_S, then immediate transition to state NOR-
MAL occurs and the new value for th-.CHI1_TICP_-TRIP_.STATUS is k.CH1-TICP_-NORMAL.

Function Overview Diagram FOD(Function Overview Diagram) is a kind of DFD, which
describes the relationship between constructs in Vsg in NuSCR software requirements specifica-
tion. Each construct in Vg is represented by specific nodes, and the relationship between them is
represented by unidirectional arrows. FOD is composed hierarchically and in this case the group
nodes are used. The name of each node is followed by the prefix naming convention described
above.

(Fig. 4) is a FOD for group node g_Bistable_Logic. It is composed of three group nodes g_Rising_Trip,
g-Falling_Trip, and g¢_Digital_Trip. As shown in (a), the group node g_Rising-Trip has f.OCI1_TICP_I
and fOCI_TICP_BP_S as input entities. The output of g_Rising_Trip are f OC1-TICP-BL_I, th-CHI_
TICP_-TRIP_STATUS, and h-OC1_TICP_SP_I. The refined FOD is represented in (b). It is composed
of three nodes which have corresponding outputs repsectively. The relationship between these three
nodes are represented by arrows.

4 Semantics for NuSCR

The behavior of software system specified by NuSCR can be defined based on the behavior of
FOD.

Function Overview Diagram FOD in NuSCR is defined as a tuple:

FOD = (N, T,I,0)



f.0C1_TICP_I
1.0C1_TICP_SP_S.

C1_SGll
f.0C1_sG2L |

C1_SGIL.
1.0C1_SG2L_SP_S

f_OC1_MTEST_TICP_I
f_OC1_MTEST_SGIL_|

f_OC1_MTEST_SG2L_|

Coincidence Logic

th_CHI_TICP_TRIP_STATUS*

ih_CH1_SGIL_TRIP_STATUS*

ih_CH1_SG2L_TRIP_STATUS*
{_CHIMT_INIT_STATUS*

g_Rising Trip

Operational Panel

h_OC1_TICP_SP_I

1.0C1_TICP_BL_I
h_OC1_SGIL_SP_|
1.0C1_SG1L_BL_|
h_OC1_SG2L_SP._I

.0C1_SG2L_BL_|

g_Falling_Trip

g_Digital_Trip

(a) g_Bistable_Logic

1.0C1_TICP_I

1.0C1_TICP_SP_S

f.0C1_TICP_
L1 1.0C1_TICP_BL_|

th_CH1_TICP_T
RIP_STATUS

th_CH1_TICP_TRIP_STATUS

—‘I h_OC1_TICP_SP_I

(b) g_Rising_Trip

Figure 4: Function overview diagram for g_Rising_Trip



— a set of all function nodes in FOD

— all nodes in Vi and Vg and Vg are defined as functions

o T
— a set of transition (n1,ns) between all nodes ny, ny in N
— V¢t =(n1,n2) € T, ny has a precedence on ngy
i
— a set of input values into FOD
— It is mapped into input variables V; of FOD
e O

— a set of output values from FOD

— It is mapped into output variables Vp of FOD

From the definition of FOD above, FOD can be defined as a function frop from input values I
to output values O. Also as all nodes in N have partial ordering according to the transition in T
and all nodes are defined as functions, frop can be represented as a function composition of all
nodes in N according to the partial orders on their precedence.

frop(olI/Vi]) = o[O/Vo]
frop = (mathematical function composition by partial orders on their precedence)

Function Variable Node Function variable in NuSCR is represented by a function variable
node in FOD. It is defined by SDT. Let Iy be the set of input values from other nodes in FOD
into the function variable node itself. Let Oy be the set of output values from this node. They
can be mapped into the set of variables, Vr; and Vo respectively. Then complex_conditions in
SDT are the predicate on Vry, and actions are the assignments on Vrpo which is the function
variable itself.

SDT is defined as a set of a pair (p,a), where p € P and a € A. P is a set of boolean predicates
on Vg, which is the conjunction of complex_conditions in condition statements and corresponding
boolean conditions. A is a set of assignments to Vro which is just the function variable itself.

SDT : a set of pair (p,a)
epePandac A

e YV (p,a) in SDT, p(c) = T then a(c) = o[Opy /Vro] = o

For example, SDT in (Fig. 5) can be defined as follows:

SDT = {(Condy =T A Condy = F, Assigny), (Condy =T A Conds = F, Assigng), (Cond; =T
A Conds =T, Assigns)}

From the definition of SDT above, a function variable node can be defined as a function fpy with
input values I'ry to output values Opy as follows.



Conditions
Cond; T - T
Cond, F
Conds B F T

—

Actions
Assign X
Assign, X
Assign, X

Figure 5: Structured decision table for a function variable

frvIpv) = o[Ipy /Ver] = Opy

History Variable Node History variable in NuSCR is represented by a history variable node in
FOD. It is defined by FSM which is composed of states, transitions between states, and labels on
transitions. Let gy be the set of input values from other nodes in FOD into the history variable
node. Let Oy be the set of output values from this node. They can be mapped into the set of
variables, Vi and Vo respectively. Then complex_conditions in FSM are the predicate on Vi
and actions are the assignments on Vv which is the history variable itself. FSM can be defined
as a relation described below:

FSM = ( Su, s0,C, A, R)
e Sy : a set of states in history variable node

e g : initial state in Sy

C : a set of complex_conditions
e A : aset of assignments
o R:

— Sy x C x A x Sy is a transition relation

-Vr (s,c,a,s/) in R,
s.t. current_state = s and ¢(o) =T  then a(o) = o[Opv /Vuo]= o

’

current_state in the definition above means the variable in C'Sgr, which indicates the current state
of the history node. It will be used in the definition of the overall NuSCR system. History variable
in (Fig. 6) can be defined as a relation as follows:

FSM = (Su, s0,C, A, R)
S = {51,552, 53}
So — Sl
C = {Condy, Conds, Conds, Conds}
A = {Assigny, Assigng, Assigns, Assigna}
R = {(S1,Condy, Assigni, S2), (Se, Conds, Assigns, S1), (S2, Conda, Assigna, Ss),
(Ss, Condy, Assigng, S1)}

From the definition of FSM above, a history variable node can be defined as a function fzy from
input values Iy to output values Ogy as follows.



Cond, / Assign,

Cond, / Assign,

Cond, / Assign

Cond, / Assign,,

Figure 6: Finite state machine for history variable node

fuvIuv) = o[Igy /Vur) = Ony

Timed History Variable Node Timed history variable in NuSCR is represented by a timed
history variable node in FOD. It is defined by TTS which is a FSM extended with timing con-
strains [a, b] in transition labels. a and b means the minimum and maximum delay in the transition
respectively. Let I7gy be the set of input values from other nodes in FOD into the timed history
variable node. Let Orgy be the set of output values from this node. They can be mapped into
the set of variables, Vg and Vyrgo respectively. Then timed_conditions are the predicate on
Vrpur and timing constrains [a, b], and actions are the assignment on Vrpy which is the history
variable itself. TTS can be defined as a relation described below:

TTS = < STH, S0, C, A, R>
e Stp : aset of states in timed history variable node x lc, where Ic is a local clock in LC
e sq : initial state in Sty

o (' : a set of timed_conditions

A : a set of assignments
o R:

— Sty x C x A x Sppg is a transition relation

—dr (s,c,a,s') in R,
s.t. current_state = s and ¢(o) =T  then a(o) = o[Orgv/Vroo] = o

The behavior of transition relations in TTS is a little different from that of FSM because of the
timing constraints. For example, the transition from state S; to Sy in (Fig. 7) has the transition
labeled with ” [a, b)Cond; /Assign,”. The minimum delay a means that when the control of timed
history node has resided at the location S; for at least a time units during which the guard C'ond;
has been continuously true, then the transition from S; to Sz may occur. The maximum delay b
means that whenever the state of history variable has resided at Sy for b time units during which
the guard Cond; has been continuously true, then the transition from S; to Se has to occur.
The behavior of this transition can be described as follows. ”lc := lc + 1”7 means the local time
progress and “lc := 0” means the local clock initialization. current_state is a variable in C'Sryy,
which indicates the current state and the current local time.

For example, timed history variable in (Fig. 7) can be defined as a relation as follows:

10



[a,b] Cond, / Assign

[0,a] Cond,
/ Assign,

[0,a] Cond,
/ Assign,

Cond, / Assign,,

Figure 7: Timed transition system for a timed history variable node

TTS = <STH7 S0, C, A, R>
St = {(S1,1c), (S2,1c), (Ss,1lc)}
So — (Sl, 0)
C = {la,b]Condy, [0, a]Conds, [0, a]Conds, Condy }
A = {Assigny, Assigng, Assigns, Assigna}
R = {((S1, (a,b)), Condy, Assigni, S2), ((S2, [0, a]), Conds, Assigns, S1), ((Sa, [0, a])Conda,
Assigna, S3), ((S3, —), Condy, Assigna, S1)}

From the definition of TTS above, a timed history variable node can be defined as a function
fray from input values Ity to output values Orpy as follows.

fravIrav) = olIrav/Vruai] = Oray

Function frpy generates an output(Orpy) whenever it gets inputs(Irgy) from other nodes
in FOD. If no conditions are satisfied, then the value of Oy in the previous scan cycle is pre-
served. However, although it gets no inputs I7gy, the transition condition can be satisfied as the
local time proceeds. In nuclear power plants system, however, this situation can be avoided. It
is because system scan cycle time d is always much more smaller than the time a or b in timing
constraint [a,b]. (i.e. dis 50ms and delay time a is 5sec.) Of course, we need to adjust that a or
b are the multiple of d.

NuSCR Software System NuSCR software system is defined as a tuple

NSS = (S, So, R, d) in which
S

— a set of system states
— O'[VSE X CSH X CSTH]
— CSpy : aset of variables which indicate the current state of history nodes

— CS7tH : a set of variables which indicate the current state and the current local time
of time history variable nodes

e Sy : initial state in S

e R : a set of transition relation S x I — S x O

11



e ( : system scan cycle time in which the system get the changed valuation function o peri-
odically

5 Case Study: AMS Example

In this section, we introduce NuSCR software requirements specification for AMS(ATWS Mitiga-
tion System) in Kori NPP Unit 1 in Korea [19], [20]. We also introduce our supporting tool for

NuSCR specification.
Channel 1

‘ AFWS A D ‘ AFWS B D
AMS
AFWS C ‘ AFWS D
AMS Channel 1 ‘ D D
Input Coincid- -
Vahdalloni> B'fﬂ‘;f’c‘s £\> ence ?g‘;z‘
Logic Logic
External Sensors Module Module Module Module
A
* Operation Panel
F s chamners
Input Coincid-
Validation Bistable onoe Output
Logic Logic Logic Logic
Module Module Module Module
Channel 2

l ‘ TBN A D ‘ TBN B D
‘ AFWS A ‘ AFWS B

. .

e w— ‘ AFWS C D ‘ AFWS D D

Figure 8: Overview of AMS Subsystem

AMS Description The AMS provides its protective action to mitigate the effects occurring
followed by a failure of the reactor trip portion of the reactor trip system. It initiates a turbine
trip and actuates AFWS(Auxiliary Feed Water System). There are two turbines and four AFWSs
for each channel. The AMS also communicates some information with OP(Operational Panel),
IPMS(In Plant Monitoring System), and Annunciators(i.e. alarms). The AMS consists of two
identical channels containing Input/Output Module, Bistable Logic Module, and Coincidence Logic
Module. The AMS and its related subsystems are described in (Fig. 8) and the description of its
subsystems are as follows.

o Input Validation Logic Module : Input validation function converts the input parameters
from raw input value to scaled value and validates the scaled input parameter.

e Bistable Logic Module : Bistable logic function determines if a trip condition exists based
on measured parameters. Two types of bistable function are implemented, a fixed setpoint
and a contact input. The fixed setpoint function compares a programmed constant with a
digitized parameter to determine the trip state. The contact bistable function uses the state
of the input to establish the trip state.

e (Coincidence Logic Module : The coincidence logic function uses the bistable trip states
generated internally from both channels to determine if a system initiation should occur.
This function generates a turbine trip signal and a AFWS actuation signal whenever a
coincidence of a low steam generator level trip or the manual trip has occurred.

e Qutput Logic Module : This logic shall obtain data from selected registers and send this
information to the Annunciator, the In-Plant Monitoring System and the AMS OP.

12



f_CH1_SG2L_CHX
f_CHL_SG1L_CHX
f.0C1_SGIL_SP_S External Output

L Fo——
oo s . con_nice o s
T SaTos:

£.0C1_TICP_SP_S. th_CHL_SGLL_
—— 9_Bistable_Logi TRIP_STATUS",
c th_CAL_SG2L_
TRIP_STATUS",
{CHI_MT_
INIT_STATUS*

Operation Panel
tables (1-36)

{.OC1_MTEST_TICP_I
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Figure 9: g AMS_Overview in NuSCR specification

NuSCR Specification for AMS We produced NuSCR specification for a channel of AMS from
[19] and [20]. (Fig. 9) depicts the g-AMS_Overview in NuSCR specifications, which is the root
node of FOD. It shows the overall data flows of AMS systems. It has 17 inputs and 64 outputs. In-
puts come from operation panel, external sensors, external hardware, and other channel. Outputs
are for IPMS, annunicators, operation panel, turbines, and AFWSs. It is identical to (Fig. 8). The
AMS consists of 4 subgroup nodes, g_Input_validation_Logic, g_Bistable_Logic, g-Coincidence_Logic, and
g-Output_Logic.

The group node g_Bistable_Logic in (Fig. 9) is decomposed into three group nodes g_Rising-Trip,
g-Falling_Trip, and g¢_Digital_Trip as depicted in (Fig. 4(a)), and the group node g_Bistable_Logic is
decomposed as (Fig. 4(b)). Finally three nodes in g_Rising_Trip are defined using SDT, FSM, and
TTS respectively as (Fig. 1, 2, 3). As short of space, we introduce the part of AMS, g_Rising_Trip,
as a typical NuSCR specification.

=)

NuSCR Specification Supporting Tools To be useful in developing practical systems, we
provide a robust and well-engineered tool, NuEditor, for specifying the NuSCR specification. In
NuEditor, simple properties s.t. completeness and consistency checking can be supported. Also
it produces the adequate PVS inputs to verify the structural properties such as input/output
completeness, consistency, and circular dependencies in NuSCR specification. It is based on our
technique in [7]. We are now developing an automatic translating procedure from NuSCR specifica-
tion into SMV inputs to verify further sophisticated properties. (Fig. 10) represents the NuEditor
we are developing. With this tool, we are going to specify the whole system of RPS(Reactor
Protection System), which is a core control process of nuclear power plant system, as a part of
KNICS [8] project in Korea.

6 Conclusion and Future Work

Software safety is an important property for safety critical systems and formal requirements spec-
ification is known as a means to the safety in the early phase of software development process.
Nowadays, in the area of nuclear power plants systems, the formal specification of software require-
ments is an urgent problem that needs to be solved right away with the replacement of existing
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Figure 10: NuEditor

analog systems by digital systems composed of software process controllers.

In this paper, we introduce NuSCR, a formal software requirements specification method for
digital protection system in nuclear power plants. NuSCR, improves the readability and specify-
ing ability by supplying different notations on the basis of the typical operation categories. The
characteristics of the software process controller in nuclear power plants, s.t. periodic sequential
processing and classifiable operations, makes this possible. We introduce the syntax and formal se-
mantics of NuSCR to apply the recognized formal verification techniques to NuSCR specifications.

An ATWS mitigation system in Korean nuclear power plants is used as a case study to illus-
trate usefulness of our method. We also introduce the supporting tool, NuEditor, to be useful in
developing practical systems. With this tool, we will specify the whole system of RPS(Reactor
Protection System), which is a core control process of nuclear power plant system, as a part of
KNICS [8] project in Korea. We are also developing an automatic translating procedure from
NuSCR specification into SMV inputs to verify further sophisticated properties.
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