
Systematic evaluation of fault trees using real-time

model checker UPPAAL

Sungdeok Chaa, Hanseong Sonb, Junbeom Yooa, Eunkyung Jeea,*, Poong Hyun Seongc

aDivision of Computer Science, EECS Department and Advanced Information Technology Research Center (AITrc), Korea Advanced Institute of Science and

Technology (KAIST), 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, South Korea
bMMIS Team, Korea Atomic Energy Research Institute (KAERI), Taejon 305-353, South Korea

cDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Taejon 305-701, South Korea

Received 16 November 2002; accepted 14 February 2003

Abstract

Fault tree analysis, the most widely used safety analysis technique in industry, is often applied manually. Although techniques such as

cutset analysis or probabilistic analysis can be applied on the fault tree to derive further insights, they are inadequate in locating flaws when

failure modes in fault tree nodes are incorrectly identified or when causal relationships among failure modes are inaccurately specified. In this

paper, we demonstrate that model checking technique is a powerful tool that can formally validate the accuracy of fault trees. We used a real-

time model checker UPPAAL because the system we used as the case study, nuclear power emergency shutdown software named Wolsong

SDS2, has real-time requirements. By translating functional requirements written in SCR-style tabular notation into timed automata, two

types of properties were verified: (1) if failure mode described in a fault tree node is consistent with the system’s behavioral model; and

(2) whether or not a fault tree node has been accurately decomposed. A group of domain engineers with detailed technical knowledge of

Wolsong SDS2 and safety analysis techniques developed fault tree used in the case study. However, model checking technique detected

subtle ambiguities present in the fault tree.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Software engineering; Formal methods; Fault tree analysis; Model checking

1. Introduction

Fault tree analysis [1] is one of the most frequently

applied safety analysis techniques [2] when developing

safety-critical and often time-critical industrial systems. It

is a goal-driven and backward analysis technique where

analysis starts from the hazardous system state specifica-

tion and credible causes leading to the top event and

relationship among them are visually documented. Fault

tree analysis attempts to convince the analyst that the

system is free from encountering or contributing to the

occurrence of the top-level event. One must possess, in

addition to general understanding of safety analysis

techniques, detailed and domain-specific knowledge to

perform fault tree analysis. Although widely used in

industry, fault tree analysis has fundamental limitation

that it is informal in nature [3]. Graphical notations help

analyst organize thought process systematically, but the

technique itself offers no help in investigating causal

events and the relationship among them. Therefore, when

different experts apply fault tree analysis, result is not

guaranteed to be repeatable, and analysis may contain

flaws. Inspection technique [4] can be used to detect

errors of fault trees, but it, too, is informal in nature.

Other techniques [13,14], such as variants of Monte

Carlo simulation, Birnbaum’s importance measure, and

Fussell–Vesely measure also can be applied to validate

fault trees. While these approaches are useful in deriving

quantitative conclusion such as the probability of a

system failing in a specific manner, they are inadequate

in determining if all credible failure modes are captured

or causal relationship among causal events are accurately

identified.

0951-8320/03/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0951-8320(03)00059-0

Reliability Engineering and System Safety 82 (2003) 11–20

www.elsevier.com/locate/ress

* Corresponding author.

E-mail addresses: cha@salmosa.kaist.ac.kr (S. Cha); hsson@kaeri.re.

kr (H. Son); jbyoo@salmosa.kaist.ac.kr (J. Yoo); ekjee@salmosa.kaist.ac.

kr (E. Jee); phseong@mail.kaist.ac.kr (P.H. Seong).

http://www.elsevier.com/locate/ress

Our research goal is to provide formal, automated and

qualitative assistance to informal and/or quantitative

safety analysis. In particular, we chose to validate the

correctness of fault trees using a model checker because

safety demonstration will always likely to be required by

government authorities when granting licenses to

operate safety-critical systems. Model checking [5] is

a proven-effective and automated technique in verifying

complex behavior of concurrent systems. A model

checker, given the system description and property

specification, determines if the properties hold in the

model or not. Behavioral model is usually written in

finite state machine, and the property specification is

written in temporal logic. If the behavior of given system

is infinite, users need to apply techniques such as

abstraction to generate a model whose behavior is finite.

For example, if a reactor temperature is represented in

real number and the threshold values related to the trip

conditions are defined, finite encoding of the temperature

would include only three possible values (e.g. low,

normal and high). Finiteness in behavior guarantees that

model checking process, fully automated, will be

terminated. Users need not worry about complex

internals of model checking algorithms and data

structures, and a model checker explores all possible

reachable states before concluding that the property

holds. Otherwise, a counterexample providing insight

into debugging the model is generated. Such exhaustive

search is a powerful tool to safety engineers who are

practically unable to investigate all possible paths and

states. There are several model checkers being used in

industry, and SMV [6] and SPIN [7] are widely used in

industry. Unfortunately, they do not support verification

of time-related system behavior. In this paper, we use a

real-time model checker UPPAAL [8] to validate the

correctness of fault trees because the system used as the

case study has real-time constraints.

The remainder of this paper is as follows. Section 2 briefly

introduces the real-time model checker UPPAAL. In Section

3, we describe the experimental safety analysis performed on

Wolsong SDS2 system. Section 4 shows the evaluation of

fault tree using model check UPPAAL. Conclusion and

future work direction are discussed in Section 5.

2. Real-time model checking using UPPAAL

In our approach, we use a real-time model checker

UPPAAL [8] to validate the correctness of fault trees.

The toolset, shown in Fig. 1, consists of an editor,

Fig. 1. UPPAAL toolset.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–2012

simulator, and verifier, and it has been used to analyze

behavior of protocol specification, control boxes, and

algorithms. Editor allows users to develop or revise a set

of non-deterministic processes extended with clock and

data variables.

Behavioral model used by UPPAAL model is the

timed automata, developed by Alur and Dill [15], which

extends classical finite state automata with clock

variables. Current implementation of UPPAAL supports

a system model that consists of a collection of timed

automata extended with integer (data) variables in

addition to clock variables. Automata may communicate

with each other via shared integer variables or using

communication channels. The UPPAAL model checker is

designed to check for simple invariant, reachability, and

bounded reachability properties. UPPAAL’s property

specifications are based on CTL (Computational Tree

Logic) [16]. UPPAAL accepts the property specification

of the following format:

w< ¼ ;Abl’Sb

b< ¼ al : blðbÞlb _ blb ^ blb! b

where a represents a clock variable, data variable

expression, or location in the timed automata. An atomic

expression represents integer ranges (e.g. 1 # x # 5)—

not real numbers—on the clock or data variables or

difference between two variables (e.g. 3 # x 2 y # 7).

The property specification ;Ab states that the

formula b is to be satisfied in all states reachable

from the initial state. Similarly, ’Sb is true if the

formula b is eventually satisfied in one or more

reachable states.1

Although property specification accepted by UPPAAL

can be an arbitrarily complex temporal logic formula [9],

we found the following property patterns to be

particularly useful when validating the correctness of

fault trees.

–;Að: pNÞ : Let pN be the temporal logic formula

semantically equivalent to the failure mode described

in the fault tree node N: The property ;Að: pNÞ

determines if system can ever reach such state. If

model checker returns TRUE, the state denoted by pN

will never occur, and the system is free from such

hazard. It means that a safety engineer has thought a

logically impossible event to be feasible, and the

model checker found an error in the fault tree. If, on

the other hand, the property is not satisfied, such

failure mode is indeed possible, and the model

checker generates detailed (but partial) information

on how such hazard may occur. Detailed analysis of

the counterexample may provide assurance that safety

analysis has been properly applied. Another possibility

is that the counterexample may reveal a failure mode

which human expert had failed to consider.

–;AððB1 ^ · · · ^ BnÞ! AÞ=;AððB1 _ · · · _ BnÞ! AÞ :

This pattern is used to validate if AND/OR con-

nectors, used to model relationship among causal

events, are correct. One can conclude that the

refinement of fault tree was done properly if model

checker returns true. Otherwise, there are two

possibilities: (1) gate connector is incorrect; or (2)

failure modes in the lower level fault tree nodes are

incorrect. A counterexample can provide insight as to

why the verification failed and how the fault tree

might be corrected.

Unfortunately, it is impossible to fully validate the

correctness of fault trees using counterexamples alone

because model checkers provide just one scenario where

the property is not satisfied. While such information can

certainly provide useful insights to safety engineers why

the property did not hold, model checkers are not

designed to provide complete and exhaustive list of

counterexamples.

3. Safety analysis on Wolsong SDS2

Wolsong SDS2 [10–12] is a software-implemented

shutdown system and has been in service2 in Korea for

the past six years. It is required to continually monitor

the state of the power plant by reading various sensor

inputs (e.g. reactor temperature and pressure) and

generating a trip signal should the reactor is found to

be in an unsafe state. Among the six trip parameters, we

have used the Primary Heat Transport Low Core

Differential Pressure (PDL) trip condition as an example

because it is the most complex trip condition and has

time-related requirements. Trip signal can be either an

immediate trip or a delayed trip, and both trips can be

simultaneously enabled. Delayed trip occurs if the system

remains in certain states for over a period of time. High-

level requirements for PDL trip were written in English

in a document called the Program Functional Specifica-

tion (PFS) as shown partially below:

“[…] If the D/I is open, select the 0.3%FP conditioning

level. If fLOG , 0:3%FP 2 50 mV, condition out the

immediate trip. If fLOG $ 0:3%FP, enable the trip.1 Since characters used to represent logical quantifiers are missing in the

standard keyboard, UPPAAL uses ‘A[]’ and ‘kEl’ to denote ‘;A’ and

‘’S’, respectively. For example, Ek l (p1.cs and p2.cs): It is possible for

two processes, p1 and p2, to be in the critical section simultaneously; A[]

(c2 . 30 imply a ¼ ¼0): Whenever c2 is greater than 30, value of data

variable a must always be zero.

2 Software and supporting documents, including requirements

specification, design specification, and safety analysis reports, were

subject to inspection when granting an operational license and no formal

methods were applied.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–20 13

Annunciate the immediate trip conditioning status via the

PHT DP trip inhibited (fLOG , 0:3%FP) window D/O.

[…]

IfanyDP signal isbelowthedelayed tripsetpointand fAVEC

exceeds 70%FP, open the appropriate loop trip error

message D/O. If no PHT DP delayed trip is pending or

active, then execute a delayed trip as follows:

a. Continue normal operation without opening the

parameter trip D/O for normally three seconds.

The exact delay must be in the range [2.7 s,

3.0 s].

b. Once the delayed parameter trip has occur,

keep the parameter trip D/O open for one

second(^0.1 s), and then close the

parameter trip D/O once all DP signals are

above the delayed trip setpoint or fAVEC is below

70% FP.

[…]”

When performing fault tree analysis, additional

documents including a software requirements specifica-

tion and software design documentation were used. These

documents provide detailed and technical insight about

the system, and they were thoroughly reviewed by a

group of technical experts and government regulators

before the operating license was granted. Fault tree,

shown in Fig. 2, was initially developed by a group of

graduate students majoring in software engineering who

had previously reviewed Wolsong SDS2 documents and

performed independent safety analysis. They are also

familiar with technical knowledge of software safety in

general and fault tree analysis in particular. Therefore,

they possessed in-depth knowledge on how the trip

conditions work. In addition, the fault tree was

subsequently reviewed and revised by a group of domain

experts in nuclear engineering who concluded that the

fault tree appeared to be correct to the best of their

knowledge.

The top-level event, derived from the results of

preliminary hazard analysis, is given as ‘PDL trip fails to

clear digital output (D/O) in required time’. The fault tree

node had been refined into three causal events connected by

OR gate. Failure modes described in some nodes (e.g. 2

and 4) were further refined.

Validation of fault tree consists of the following steps:

(1) Translate structured decision tables into a set of

concurrent timed automata.3 Variables used in the

timed automata follow convention used in four variable

approach, and prefixes m_, c_, and k_ represent

monitored variables, controlled variables, and constant

values, respectively. For example, functional require-

ment “If fLOG , 0:3%FP 2 50 mV, condition out the

immediate trip” is captured by the rightmost transition

Fig. 2. A part of fault tree of Wolsong PDLTrip.

3 Our UPPAAL model for PDLTrip in Wolsong SDS2 is described in

Appendix A.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–2014

of Fig. 3 (timed automata given in the figure can be

represented in the text format as shown below:

labeled “If m_PDLCond ¼ ¼k_CondSwLo and

f_Flog , 2689, then f_PDLCond U k_CondOut.”.4 For the

PDL trip alone, the complete specification consisted of 12

concurrent timed automata, and there were about 215 feasible

states, clearly too many to fully inspect manually;

(2) Derive properties to be verified using one of the two

patterns described earlier; and

(3) Run UPPAAL to perform model checking.

4. Fault tree evaluation

4.1. Case 1: correctness of failure mode described

in the node 3

Domain knowledge is needed to correctly rewrite

the failure mode in temporal logic formula. In our example,

the formula (f_PDLSnrI ¼ ¼k_SnrTrip AND

f_PDLCond ¼ ¼k_CondIn) denotes the activation of

immediate trip condition. Likewise, delayed trip is can-

celled when the PDLDly process moves from the Waiting

state to the Normal state and the value of f_PDLTrip

becomes k_NonTrip in some states other than the initial

state (e.g. denoted by having clock variable z . 0).

Therefore, temporal logic formula corresponding to the

absence of system state corresponding to the fault tree

node 3, is given as follows:

UPPAAL concluded that the property was not satisfied,

and a counterexample, shown in terms of simulation trace,

was generated as shown in Fig. 4. Each step can be replayed,

and the tool graphically illustrates indicates which event took

place in which configuration.5 Simulation trace revealed that

;Að: p3Þ whereas p3 corresponds to

(f_PDLSnrI ¼ ¼k_SnrTrip and f_PDLCond ¼ ¼k_CondIn) and

(f_PDLDly ¼ ¼k_InDlyNorm and f_PDLTrip ¼ ¼k_NotTrip and z . 0)

Fig. 3. Timed automata5 for PDLCond trip condition.

process PDLCond{

state CondIn, CondOut;

init CondIn;

trans CondIn ! CondOut {

guard m_PDLCond ¼¼ k_CondSwLo, f_Flog , 2689;

assign f_PDLCond U k_CondOut;},

CondOut ! CondIn {

guard m_PDLCond ¼¼ k_CondSwLo, f_Flog . ¼ 2739;

assign f_PDLCond U k_CondIn;},

CondIn ! CondOut {

guard m_PDLCond ¼¼ k_CondSwHi, f_Flog ,3299;

assign f_PDLCond U k_CondOut;},

CondOut ! CondIn {

guard m_PDLCond ¼¼ k_CondSwHi, f_Flog . ¼ 3349;

assign f_PDLCond U k_CondIn;}.)

4 In the program functional requirements document, 0.3% of FP (full

power) is defined as 2739 mV. Therefore, 0.3%FP 2 50 mV evaluates to

2689 mV.

5 Although detailed explanation of simulation trace shown in Fig. 4 is

beyond the scope of this paper, the followings are worth brief explanation.

The upper left window, ‘Enabled Transitions’, indicate all of the active

transitions in the current system configuration. Window in the middle

displays the values of data and clock variables in the current and visually

highlighted configuration.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–20 15

the property did not hold if the trip signal is (incorrectly)

turned off (e.g. becomes NotTrip) when the immediate trip

condition becomes false while delayed trip condition

continues to be true. This is possible because two types of

trips have the same priority. While failure mode captured in

the node 3 is technically correct when analyzed in isolation,

model checking revealed that it was incomplete and that it

must be changed to ‘Trip signal is turned off when the

condition of one trip becomes false although the condition of

the other continues to be true’. (Or, two separate nodes can be

drawn.) Analysis of simulation trace provided safety analysts

an interactive opportunity to investigate details of subtle

failure modes human forgot to consider.

4.2. Case 2. Correctness of failure mode described

in the node 12

Node 12 describes a failure mode where the system

incorrectly clears a delayed trip signal outside the specified

time range of [2.7 s, 3.0 s]. UPPAAL accepts only integers

as the value of a clock variable, z in this example, and if we

were to use 27 and 30 to indicate the required time zone,

literal translation of the failure mode shown in the fault tree

would correspond to the following:

;Að: p12Þ where p12 is

ððz , 27 or z . 30Þ and f_PDLTrip ¼ ¼k_NotTrip)

However, model checking of this formula indicates that

the property does not hold, and an analysis of the

counterexample revealed that the predicate p12 does not

hold when z is equal to zero (e.g. no time passed at all). This

is obviously incorrect, based on domain-specific knowledge

of how delayed trip is to work, and it quickly reminds a

safety analyst that the failure mode, as it is written, is

ambiguous in that the current description of the failure mode

fails to explicitly mention that the system must be in the in

the waiting state, not the initial system state, before the

delayed trip timer is set to expire. That is, the property needs

to be modified as follows:6

;Að: p12Þ where p12 is

(f_PDLSnrDly 5 5 k_SnrTrip and

Fig. 4. Screen dump of the UPPAAL outputs.

6 The following clause in the PFS provides clue as to how the formula is

to be revised: “If any DP signal is below the delayed trip setpoint and fAVEC

exceeds 70% FP, open the appropriate loop trip error message D/O. If no

PHT DP delayed trip is pending or active, then execute a delayed trip as

follows: Continue normal operation without opening the parameter trip D/O

for normally three seconds. The exact delay must be in the range [2.7 s,

3.0 s].”

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–2016

f_FaveC > 570) and ðz , 27 or z . 30Þ and

(f_PDLTrip ¼ ¼k_NotTrip)

Model checking of the revised property demonstrated

that the property is satisfied, and it means that the fault tree

node 12 is essentially correct although it initially contained

implicit assumptions. Application of model checking

technique helped a safety engineer better understand the

context in which specified failure mode occurs and therefore

conduct a more precise safety analysis.

5. Conclusions and future work

This paper demonstrated that model checking technique

is useful when we are to validate the correctness of informal

safety analysis such as fault tree analysis. Whereas fault tree

analysis largely depends on the domain-specific knowledge

of human experts, it lacks formality and the process is not

automated. By performing a straightforward transformation

of the software requirements specification into timed

automata, we were able to have a model checker, UPPAAL

in our case study, examine all possible states exhaustively

and determine if failure mode anticipated is indeed correct.

We learned that model checking technique is a useful

complement to fault tree analysis because it was able to

identify subtle and previously omitted failure mode. In the

case of the fault tree node (3, failure mode was correct by

itself, but a safety engineer realized that the other case must

also be considered when model checker failed to prove the

property. When applied to fault tree node (12, model

checker provided insight that the failure mode can be (and

should be) revised to describe the identified failure mode

more accurately.

It should be noted the group who developed that fault tree

is familiar with safety techniques in general and the

Wolsong SDS2 system in particular. In addition, fault tree

was informally reviewed by a group of domain experts and

they had concluded that the fault tree appeared to be correct.

Results of model checking to validate the correctness of

fault tree surprised technical staff involved in fault tree

analysis and an independent review. Such experience

convinced us that model checking technique is a useful,

complementary, and automated tool to safety engineers.

Even if model checking fails to identify previously

undetected failure modes, one would have a strong

confidence if a fault tree analysis result had been verified

by a model checker.

We believe that formal methods can be more widely

applied than reported in this paper in making sure that

safety analyses have been performed correctly. For

example, the proposed approach can validate correctness

of the failure mode and effect analysis (FMEA) results.

FMEA, popular among engineers developing safety-critical

systems, depends on forward analysis and examines

the impact of anticipated failure modes. Like fault tree

analysis, FMEA is informal in nature. Correctness of

FMEA can be formulated as a reachability problem using

anticipated failure mode as the initial state, and model

checker can examine if the state denoting the consequence

of the failure mode is indeed reachable.

Acknowledgements

This work was partially supported by the Korea Science

and Engineering Foundation (KOSEF) through the multi-

presence project at AITRC and Korea National Reserch

Laboratory (NRL) Program.

Appendix A

This appendix describes the simulation trace as shown in

Fig. A1, which is a result of the model checking for node 3

of the fault tree shown in Fig. 2.

The system is modeled as a tuple, (PDLTrip, PDLDly,

PDLCond, PDLSnrI1, PDLSnrDly1, mFlog, mPHTD1,

Flog, FaveC, mPDLCond, pTimer). For the convenience

of the explanation, we gave numbers to each line of the

trace. Each tuple on oddly numbered line shows a state of

the system and tuples on evenly numbered line show the

activated transitions at the state that the just above tuple

represents. Followings are more detailed descriptions of

this trace:

Line 1–3. These tuples represent that the delayed trip

condition is disabled—due to unspecified environmental

conditions—after both the immediate trip and delayed

trip conditions are met. Note that the state of PDLSnrDly,

which is one of the elements of the system tuple, changes

from DSnrTrip to DSnrNotTrip through the transition

(PDLSnrDly1.trans3) (line 2). Referring to Fig. A2 enables

us to guess that this transition is happened because f_FaveC

is less than 70 (f_FaveC , 70).

Line 3–7. The system reads the value of mPHTD,

which is one of the inputs (line 4). This value changes

the state of PDLSnrI, which determines the state of the

immediate trip, from ISnrTrip(line 5) to ISnrNotTrip

(line 7) by the transition (PDLSnrI1.trans3) (line 6). In

other words, the value read is greater than the predefined

trip set-point and thus the trip status turns to be normal.

Refer to Fig. A3.

Line 7–9. The system reads the value of mPHTD again

(line 8). This value makes the PDLSnrI state returned to the

state of immediate trip. Fig. A4 shows the process of reading

mPHTD.

Line 9–13. The system reads the value of FaveC twice

(lines 10 and 12). Fig. A5 shows the process of reading FaveC.

Line 13–15. The FaveC value changes the state of

PDLSnrDly, which determines the state of the delayed trip,

from DsnrNotTrip to DsnrTrip by the transition

(PDLSnrDly1.trans2) (line 14).

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–20 17

Line 15–19. The delayed trip occurs accordingly to the

model shown in Fig. A6.

Line 19–21. The system reads the value of FaveC again

(line 20). This value is in a state that can make the delayed

trip status normal.

Line 21–25. Passing by the waiting state during the time

interval [0.9, 1.1], the delayed trip comes to the normal

state. Refer to the model in Fig. A6.

Line 25–27. The above situation causes the state of

PDLTrip to be in NotTrip through the transition (PDLTrip.

trans4) (line 26). Refer to Fig. A7, which shows the timed

automata of the PDLTrip process.

Note that the immediate trip condition has already

been activated.

Line 29. As a result, even though the immediate trip

condition is activated, the process of PDLTrip stays at

Fig. A2. Timed automata for PDLSnrDly process. Fig. A3. Timed automata for PDLSnrI process.

Fig. A1. Simulation trace of the UPPAAL output.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–2018

Fig. A4. Timed automata for the process of reading mPHTD and pTimer.

Fig. A6. Timed automata for PDLDly process.Fig. A5. Timed automata for the process of reading FaveC.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–20 19

the state of NotTrip. This means that the system is in an

unsafe state that may be a critical hazard.

The NotTrip state of PDLTrip means that both the

immediate trip and the delayed trip are in ‘Normal’ state.

The above counter example, however, shows a situation that

the system may change its state from Trip to NotTrip when

only one kind of trips changes to normal state. This is

because both of the two types of trip determine the state of

PDLTrip with the same priority.

References

[1] Vesely WE. Fault tree handbook. Technical report NUREG-0492, US

Nuclear Regulatory Commission; 1981.

[2] Leveson NG. Safeware: system safety and computers. New York:

Addison-Wesley; 1995.

[3] Kocza G, Bossche A. Automatic fault-tree synthesis and real-time

trimming, based on computer models. Proc Ann Reliab Maintain-

ability Symp 1997;71–5.

[4] WWW formal technical review (FTR) Archive, http://www.ics.

hawaii.edu/~johnson/FTR/

[5] Clarke Jr.EM, Grumberg O, Peled DA. Model checking. Cambridge,

MA: MIT Press; 1999.

[6] McMillan KL. Symbolic model checking: an approach to the state

explosion problem. Dordrecht: Kluwer; 1993.

[7] Holzman GJ. The model checker SPIN. IEEE Trans Software Engng

1997;23(5).

[8] Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi

W. UPPAAL: a tool suite for automatic verification of real-

time systems. Proceedings of the Fourth DIMACS Workshop on

Verification and Control of Hybrid Systems, New Brunswick, NJ;

October 1995.

[9] Pnueli A. The temporal logic of programs. Proceedings of the 18th

IEEE Symposium on Foundations of Computer Science; 1977.

p. 46–77.

[10] Program functional specification, SDS2 programmable digital com-

parators, Wolsong NPP 2,3,4. Technical Report 86-68300-PFS-000

Rev. 2, AECL CANDU; May 1993.

[11] Software requirement specification, SDS2 programmable digital

comparators, Wolsong NPP 2,3,4. Technical report 86-68350-SRS-

001 Rev. 0, AECL CANDU; June 1993.

[12] Software design description, SDS2 programmable digital compara-

tors, Wolsong NPP 2,3,4. Technical report 86-68350-SDD-001 Rev.

0, AECL CANDU; December 1993.

[13] Moss TJ. Quantitative techniques for nuclear plant safety assessment

and design. Meeting on Nuclear Power Reactor Safety, Brussels,

Belgium; 16 Oct 1978.s

[14] Andrews JD. The use of not logic in fault tree analysis. Qty Reliab

Engng Int 2001;17(3):143–50.

[15] Alur R, Dill D. Automata for modeling real-time systems. Theor

Comput Sci 1994;126(2):183–236.

[16] Ben-Ari M, Manna Z, Pnueli A. The temporal logic of branching time.

Acta Inform 1983;20:207–26.

Fig. A7. Timed automata for the process of PDLTrip.

S. Cha et al. / Reliability Engineering and System Safety 82 (2003) 11–2020

http://www.ics.hawaii.edu/~johnson/FTR/
http://www.ics.hawaii.edu/~johnson/FTR/

	Systematic evaluation of fault trees using real-time model checker UPPAAL
	Introduction
	Real-time model checking using UPPAAL
	Safety analysis on Wolsong SDS2
	Fault tree evaluation
	Case 1: correctness of failure mode described in the node 3
	Case 2. Correctness of failure mode described in the node 12

	Conclusions and future work
	Acknowledgements
	References

