
An effective technique for the software requirements analysis of NPP

safety-critical systems, based on software inspection, requirements

traceability, and formal specification

Seo Ryong Kooa,*, Poong Hyun Seonga, Junbeom Yoob, Sung Deok Chab, Yeong Jae Yooc,1

aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea
bDivision of Computer Science and AITrc/SPIC/IIRTRC, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science

and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea
cBNF Technology Inc., 150, Duckjin-dong, Yuseong-gu, Daejeon 305-353, South Korea

Received 2 April 2004; accepted 24 August 2004

Available online 19 November 2004

Abstract

A thorough requirements analysis is indispensable for developing and implementing safety-critical software systems such as nuclear

power plant (NPP) software systems because a single error in the requirements can generate serious software faults. However, it is very

difficult to completely analyze system requirements. In this paper, an effective technique for the software requirements analysis is suggested.

For requirements verification and validation (V&V) tasks, our technique uses software inspection, requirement traceability, and formal

specification with structural decomposition. Software inspection and requirements traceability analysis are widely considered the most

effective software V&V methods. Although formal methods are also considered an effective V&V activity, they are difficult to use properly

in the nuclear fields as well as in other fields because of their mathematical nature. In this work, we propose an integrated environment (IE)

approach for requirements, which is an integrated approach that enables easy inspection by combining requirement traceability and effective

use of a formal method. The paper also introduces computer-aided tools for supporting IE approach for requirements. Called the nuclear

software inspection support and requirements traceability (NuSISRT), the tool incorporates software inspection, requirement traceability,

and formal specification capabilities. We designed the NuSISRT to partially automate software inspection and analysis of requirement

traceability. In addition, for the formal specification and analysis, we used the formal requirements specification and analysis tool for nuclear

engineering (NuSRS).

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Software requirements analysis; V&V; Safety-critical systems; Inspection; Traceability; Formal method
1. Introduction

The use of digital systems has been increasing in the

nuclear industry in recent years. The importance of software

verification and validation (V&V) is therefore emphasized

for nuclear safety. Inspection is widely believed to be an

effective technique of software V&V. It can greatly increase
0951-8320/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2004.08.024

* Corresponding author. Fax: C82 42 869 3810.

E-mail addresses: srkoo@kaist.ac.kr (S.R. Koo), phseong@kaist.ac.kr

(P.H. Seong), jbyoo@salmosa.kaist.ac.kr (J. Yoo), cha@salmosa.kais-

t.ac.kr (S.D. Cha), yjyoo@bnftech.com (Y.J. Yoo).
1 Fax: C82 42 868 4384.
productivity and product quality by reducing development

time and by removing defects. Inspection can be applied to

the whole software life cycle. By inspecting products as

early as possible, major defects will be revealed sooner and

will not be propagated through to the final product.

However, software inspection is labor-intensive and its

introduction is difficult to justify in terms of the investment

of time and money. This labor-intensive feature is

compounded because software inspection uses little tech-

nology. Software inspection does not fit in well in a

development environment that is more technology-oriented.

These problems are mainly due to a lack of under-

standing. Many nuclear engineers have heard of software
Reliability Engineering and System Safety 89 (2005) 248–260
www.elsevier.com/locate/ress

http://www.elsevier.com/locate/ress


S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 249
inspection, but few know enough to implement it. They are

aware of its often-quoted benefits but are unwilling to risk

implementing it. They feel much more secure with

traditional testing methods.

Software inspection is also difficult to implement

properly. Incorrect implementation will produce poor

results. When this happens, people are discouraged from

using software inspection again, and apocryphal tales of

how ‘inspection was a disaster for us’ soon spread.

Nonetheless, software inspection is gaining in popularity.

More people are using it and benefiting from it. At the same

time, new variations are being created or tailored for certain

types of products or for use under certain circumstances.

For more concrete inspection, requirements traceability

analysis is considered a component of software inspection in

this work. This point of view is the motivation for

integrating the capability of requirements traceability

analysis into software inspection. Requirements traceability

analysis identifies requirements that are either missing from,

or added to, the original requirements. Applying require-

ments traceability to the software architecture phase can aid

in identifying requirements that have not been accounted for

in the architecture. Stepwise refinement of the requirements

into the architecture produces a natural set of mappings

from which requirements traceability can be derived.

Although formal methods such as Statechart [1], CPN

[2], RSML [3], and SCR [4] are considered effective V&V

activities, their proper use is difficult in the nuclear fields

due to their mathematical nature. It is because the software

developers in nuclear fields are more familiarized in ‘single

and intuitive’ notations such as ladder-logic or function

block diagram programming. Formal specification, how-

ever, can lessen requirement errors by reducing ambiguity

and imprecision and by clarifying instances of inconsistency

and incompleteness.

To promote the application of software inspection,

requirement traceability, and the formal specification

method in this work, we developed an IE approach for

requirements which is an effective technique for the

software requirements analysis of nuclear power plant

(NPP) safety-critical systems in Section 3. Our approach

integrates software inspection, requirements traceability,

and formal methods in order to support systematic

requirement analysis.

We also developed the nuclear software inspection

support and requirements traceability tool (NuSISRT),

which comprises three views: an inspection view, a

traceability view, and a structure view. The inspection

view of the NuSISRT was designed to partially automate the

software inspection process to reduce the burden of software

inspection. Requirements traceability analysis, which is

considered an important activity of software V&V, is

supported through the traceability view of the NuSISRT. In

addition, the structure view of the NuSISRT enables the

analyzer to easily specify a system using a formal

specification method. Moreover, the NuSRS [5], which is
another tool for formal requirements specification and

analysis for nuclear fields, supports the formal requirements

specification using the results of the structure view.
2. Related works

2.1. Software requirements inspection

Fagan inspection [6] was an attempt to improve software

quality using systematic team-orient review. Since Fagan

first defined the software inspection process in 1976, there

have been many variations of software requirements

inspection. The major goal is to detect as many errors as

possible, not to suggest corrections or examine alternative

solutions.

We describe here the original method.

An inspection team generally consists of four to six

people. Each person has one of the following well-defined

roles.

Moderator. A moderator is the person overall in charge of

the inspection. The moderator’s task is to invite suitable

people to join the inspection team, distribute source materials

and to organize and moderate the inspection meeting.

Author. An inspection requires the presence of the author

of the product under inspection. The author can give

invaluable help to the inspectors by answering questions

pertaining to the intent of the document.

Reader. During an inspection meeting, the reader’s job is

to paraphrase out loud the document under inspection.

Recorder. The recorder’s duty is to note all defects, along

with their classification and severity. Although Fagan says

this task can be accomplished by the moderator, another

member of the team is usually chosen because the workload

can be quite high, though mainly secretarial. The recorder is

often known as the scribe.

Inspector. Any remaining team members are cast as

inspectors. Their only duty is to look for defects in the

document.

For effective use of software inspection, Fagan describes

the five stages of the inspection process as follows.

Overview. The entire team is present during the over-

view. The author describes the general area of work and

then gives a detailed presentation on the specific document.

The document is then distributed to all members and any

necessary work is assigned to the members.

Preparation. Each team member carries out individual

preparation and studies the document. Errors in the

document will be found during this stage but, in general,

more errors will be found at the next stage. Checklists of

common types of defects can help the inspectors concentrate

on the most beneficial areas of the inspection. Each

inspector produces a list of comments on the document,

indicating defects, omissions and ambiguities.

Inspection. The inspection meeting involves all team

members. The reader paraphrases all areas of the document.



S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260250
During this process, inspectors can stop the reader and raise

any issue until a consensus is reached. If members agree that

a particular issue is a defect, the issue is classified as

missing, wrong or extra. The severity of the defect is also

classified as major or minor. At this point the meeting

moves on. No attempt is made to find a solution for the

defect; this step is carried out later. After the meeting, the

moderator writes a report detailing the inspection and all

defects. The report is then passed to the author for the next

stage.

Rework phase. During the rework phase, the author

corrects all the defects that are found in the document and

detailed in the moderator’s report.

Follow-up. After the document has been corrected, the

moderator ensures that all required alterations have been

made. The moderator then decides whether the document

should be re-inspected, either partially or fully.
2.2. Requirements traceability analysis

Requirements traceability (RT) is to trace system,

software requirements through requirements, design, code,

and test materials RT is concerned with the relationships

between requirements, their sources and the system design.

Through the RT analysis, we can get the following

benefits:
†
 completeness/omissions
†
 identification of most important or riskiest paths
†
 locations of interactions
†
 discovery of root causes of faults and failures

For more efficient RT analysis, the calculation algorithm

for similarity between Korean sentences was developed in

this work. That for English sentences was adopted from the

Luhn’s work [7]. So, the calculation algorithms can support

both the documents written in English and Korean. In this

section, we introduce the basic concepts of the calculation

algorithms for similarity.
2.2.1. Statistical analysis for English documents—cosine

vector similarity formula

In 1957, Luhn [7] noted that an information retrieving

system could be made by comparing specific words with the

words of a query. Once certain important terms are extracted

through analysis of the documents subject of a search, each

document can be expressed in the following vector form

according to the existence of the terms

D Z ðt1; t2; t3;/; tnÞ (1)

where D is term vector of a specific document and tk is 0 or 1

depending on whether the document contains specific terms

(kZ1, 2,., n).

An information request or a query can also be expressed

by a term vector as follows
Q Z ðq1; q2; q3;/; qnÞ (2)

where Q is the term vector of a query and qk is 0 or 1

depending on whether the query contains specific terms (kZ
1, 2,., n).

The simplest method of defining similarity is to compute

the value of similarity with the number of terms that coexist

in a document and a query. In this case, similarity of

document written in English is represented by the following

formula:

Similarity ðD;QÞ Z
Xn

kZ1

tkqk (3)

Nevertheless, by assigning different weighting factors to

each term, the measurement of similarity can be more

effective than merely using 0 and 1. Such weighting factors

can be assigned by many different methods. The normal-

ization of vectors is a common method. By this procedure,

the similarity between a document and a query is given from

the following cosine vector similarity formula:

Similarity ðD;QÞ Z

Pn
kZ1 wqkwdkPn

kZ1ðwqkÞ
2
Pn

kZ1ðwdkÞ
2
; (4)

where wqk is the weighting factor of the kth term in the query

and wdk is the weighting factor of the kth term in the

document (kZ1, 2,., n).

2.2.2. Linguistic analysis for Korean documents—case

grammar

Unlike English, the Korean language has a free word

order (scrambling) and inflections. In addition, it has many

ellipses of essential sentence components. Furthermore,

Korean has an agglutinative characteristic in which a word

is formed with an essential morpheme and a formal

morpheme. Consequently, linguistic methods are favored

over statistical methods for the analysis and processing of

Korean. By modifying and simplifying the grammar of

natural languages, linguistic methods enable languages to be

analyzed. Some of the typical types of grammar are as

follows:
†
 phase structure grammar (Chomsky)
†
 unification grammar
†
 dependency grammar (Tesniere)
†
 case grammar (Fillmore).

Among these types of grammar, dependency grammar

and case grammar are favored for their suitability to

scrambling and omitting. There have been many studies,

particularly in the Department of Computer Science at the

Korea Advanced Institute of Science and Technology

(KAIST), on the processing systems of natural language

using these types of grammar. A methodology for analyzing

traceability based on the concepts of case grammar was

proposed in [8]. In analyzing Korean, it is possible to grasp

the cases of substantives with the information about the case



Fig. 1. The similarity calculation algorithm for Korean documents.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 251
frames of verbs and the postpositions added to the

substantives. Once analyzed with case grammar, sentences

are expressed in vector form. Then their similarities can be

computed using Cosine Vector Similarity Formula. In this

manner, substantives of the same cases (i.e. semantic roles)

can be compared to obtain the similarity of sentences.

Fig. 1 shows a schematic diagram of the similarity

calculation algorithm for Korean documents presented in

[8]. The proposed method can be considered a more

semantic-oriented method than the statistical method,

because it re-structures sentences based on the semantic

roles of words or phrases in the sentences.
2.3. NuSCR approach

The Atomic Energy of Canada Limited (AECL)

approach specifies a methodology and format for the

specification of software requirements for safety-critical

software used in real-time control and monitoring systems

of nuclear generating systems. The AECL approach is a

SCR-style software requirement specification (SRS) ver-

ification method based on the Parnas four-variable method

[9]. A nuclear system reads environmental states through

monitored variables that are transformed into input

variables. The values of the output variables are calculated

and changed into control variables. The AECL provides two

different views of the software requirements: the function

overview diagram (FOD) presents a large view, and the

structured decision table (SDT) presents a small view of

each function depicted in the FOD. The AECL specifies all

the requirements of the nuclear control system in the FOD

and SDT notations. This specification is somewhat complex

if timing and history-related requirements are considered,
though the difficulty of specification is alleviated in the

software cost reduction (SCR) for nuclear engineering.

To maximize safety of NPP safety-critical software,

proven-effective formal methods are being used. For

example, SCR-style notation was previously used to

specify software requirements for Wolnsung SDS2 [10],

a shutdown system currently in service at a different plant

in Korea. Experts who performed critical analysis on SCR

and other formal specification languages came to the

conclusion that SCR-like notation is well-suited for

specifying and verifying requirements for NPP but that

the notation in its current form is too verbose to be

effectively used. Furthermore, availability of SCR* toolset

was unsatisfactory from the viewpoint of KNICS [11]

project management office. Therefore, an effort was

initiated to: (1) customize SCR so that characteristics

unique to nuclear engineering domain are best reflected in

the design of a specification language; and (2) develop a

tool suite to integrate graphical editing capability and

formal verification environment.

The NuSCR approach [12], as noted earlier, customizes

SCR to nuclear engineering industry. The NuSCR approach,

based on SCR-style AECL notation [9] used in specifying

requirements for Wolsung SDS2, uses function overview

diagram (FOD) to capture high-level data flows. In addition,

three basic constructs—function variable, history variable,

and timed history variable—are defined by structured

decision table (SDT), finite state machine (FSM), and

timed transition system (TTS), respectively [13]. NuSCR

improves the readability of specification and enhances

expressiveness by supporting intuitive notations. Details on

formal definition of NuSCR syntax and semantics are found

in [12].

In the approach of AECL, the state-based operations such

as trip setpoint hysterisis are specified by functions,

although they have originally state-based features. It is

because that the basic specifying concept of AECL

approach is to specify all aspects by functions. Timing-

based operations such as delay timer are also specified by

special timer functions, which are too hard to define and

understand. In the NuSCR approach, we adopt FSM for

specifying state-based parts, and a kind of TTS for timing-

related parts in software requirements.

The NuSCR formal software requirements specifications

can be verified by theorem prover PVS [14,15]. Using PVS,

we can verify the structural properties such as input/output

completeness, consistency, and circular dependencies in

NuSCR specification. NuSCR specifications can also be

verified by model checker such as the SMV [16], based on

the formal semantics of NuSCR presented in this work. We

are developing an automatic translator that translates

NuSCR specification into SMV inputs. Therefore, we can

say that the NuSCR approach is an extended formal

specification and verification method of the existing SCR-

style of the AECL approach.



S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260252
3. An effective technique for the software

requirements analysis

In this work, we developed an IE approach for

requirements which is an effective technique for the software

requirements analysis; the technique enables easy inspection

by combining requirements traceability and effective use of a

formal method. There are some difficulties in putting

inspection into practice. Because software requirements

inspection is labor-intensive, it is difficult to implement

properly. If implemented wrongly, they will produce poor

results, in comparison with the effort expended. Also, there

are difficulties in using formal method. Because of

mathematical nature of formal method, it is difficult to

understand the syntax and semantics. Usually, most nuclear

engineer tends to like simple and intuitive techniques

because they are more familiarized with the ladder-logic or

function block diagram style simple logic. So, formal

methods are not easy to be used properly in nuclear fields.

For more effective software requirements analysis, IE

approach for requirements which integrates inspection,

requirements traceability and formal specification was

proposed in this work. By using IE approach for require-

ments, we can support the inspection of all software

development documents written in natural language. The

inspection results, which are the main requirements elicited

from the documents, can then be used not only for

requirements traceability analysis but also for software

formal specification.

Because of the difference in domain knowledge between

a developer and a requirements analyzer, the analyzer has

difficulty in completely understanding design documents

written in a natural language instantly and in formally

specifying the software requirements of the documents,

making it difficult to assure the quality of a specification. As

a result, reducing the difference in domain knowledge is

critical for software development. Furthermore, because

requirement documents are mostly written in a natural

language, the analyzer needs considerable time and effort to

understand and formally specify the documents.
Fig. 2. Software V&V tasks
Generally, a software life cycle consists of a concept-

phase, a requirements phase, a design phase, an implemen-

tation phase, and a test phase. Each phase is defined so that

its activities are distinct from the activities of the other

phases. As shown in Fig. 2, in the IEEE Standard 1012-

1998, titled ‘Software Verification and Validation,’ [17]

minimum V&V tasks for safety-critical systems are defined

for each phase. The V&V tasks should be traceable back to

the software requirements, and a critical software product

should be understandable for independent evaluation and

testing.

Document evaluation and traceability analysis are major

tasks of the concept and requirements phases. In the

concept-phase, which is the initial phase of a software

development project, the needs of the user are described and

evaluated through documentation. The requirements phase

is the period in the software life cycle when requirements

such as the functional and performance capabilities of a

software product are defined and documented.

In this work, IE approach for the software requirements

analysis focuses on the concept and requirements phases. To

fill the gap between the natural language document phase

and the formal specification phase, our approach helps the

user to easily perform an inspection and to efficiently

compose a formal specification.

Fig. 3 shows a schematic diagram of the approach

proposed in this work. Our effective technique for the

software requirements analysis consists of four steps for

document evaluation and requirement analysis throughout

the concept and requirement phases.
3.1. Document evaluation in IE approach for requirements

The first stage of supporting V&V activity involves

evaluation of the concept and requirement documents

written in natural language. In this stage, to increase the

quality of the design documents written in natural language,

our approach supports software requirements inspection

(Step 1) and requirements traceability analysis (Step 2). In

the first stage, which focuses on document evaluation, our
during the life cycle.



Fig. 3. Schematic diagram of the IE approach for requirements.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 253
approach enables the user to easily conduct inspections and

requirements traceability.

3.1.1. Step 1: inspection based on Fagan inspection

In Step 1, software requirements inspection is based on

the Fagan inspection process mentioned in Section 2: the

system requirements are elicited on the basis of Fagan’s

inspection checklists. Rigor is a desirable inspection

attribute. Repeatability is also essential if feedback is to

be used to improve the process. In addition, it is important to

identify requirements that are either missing from, or added

to, the original requirements. Through the systematic

inspection process, these attributes should be supported in

Step 1 of IE approach for requirements. The major role of

Step 1 is document handling, which supports on-line

browsing of documents and elicitation of requirements.

And then, composition of checklist is also an important role.

Actually, in one document, there are many sentences but

all of them are not requirements. Therefore, we have to elicit

adequate requirement sentences for more effective inspec-

tion. And then, software requirements inspection based on

checklist can be performed by each inspector. As a simple
Table 1

Inspection results of AMS
example, we performed inspection for ATWS mitigation

system (AMS) based on our approach. We examined

the functional requirements (FR) document [18] in con-

cept-phase and software requirements specification (SRS)

document [19] in requirement-phase. In view of three V&V

criteria such as completeness, consistency, and correctness,

the checklist was composed by authors for checking of S/W

function definition, I/O variable definition, S/W behavior

definition, and interface definition. As shown in Table 1, we

could find some comments for AMS according to V&V

items in the checklist.
3.1.2. Step 2: requirements traceability

In Step 2, requirements traceability is another important

V&V activity. Using the inspection results of Step 1, we can

more easily map the source requirements (concept-phase

document) and the destination requirements (requirement-

phase document). In this work, we also developed

techniques for calculating the similarity between require-

ment sentences. Based on the cosine vector similarity

formula and the case grammar mentioned in Section 2,



Fig. 4. Schematic diagram of requirements traceability.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260254
the similarity of design documents written in English and

Korean can be calculated for efficient traceability analysis.

In Step 2 of IE approach for requirements, ID number of

requirements should be assigned to each requirement

sentence elicited from Step 1. And then, in the RT matrix,

the relation between the source requirements and the

destination requirements should be described for require-

ments traceability analysis. Using this result of relation, we

can analyze the traceability between documents. Fig. 4

shows a schematic diagram of requirements traceability.

In Fig. 4, similarity calculation algorithms support the

analyzer to make a relation between documents in the RT

matrix. Using the similarity calculation algorithms, we can

represent the similarity as percentage in the RT matrix and

the result of similarity will be helpful to the analyzer in

traceability analysis. Table 2 shows the results of trace-

ability analysis for the very early version of AMS. Based on

the results of Step 1, there were 96 requirement sentences in

FR document and there were 142 requirement sentences in

SRS document. Among them, 60 requirement sentences of

FR were reflected in SRS document and we could not find

the relation about 21 requirement sentences of FR. On the

other hand, we could not decide the relation about 15

requirement sentences of FR.
3.2. Requirements analysis in IE approach for requirements

The second stage in Fig. 3, which focuses on formal

requirements analysis, enables an effective transition from

a natural language specification into a formal specifica-

tion in the requirements phase. Because of the difficulty

of directly generating a formal specification from a

natural language document, we need to extract useful

information from the design documents. In this stage, our
Table 2

Requirements traceability results of AMS
approach supports structure decomposition and analysis

(Step 3) and NuSCR formal specification and analysis

(Step 4).
3.2.1. Step 3: structure decomposition and analysis

Step 3 supports the structure decomposition and analysis

of a system through an input-process-output type of

structure. Based on the document evaluation in the first

stage of IE approach for requirements, structural infor-

mation such as inputs, functions, and outputs is extracted

and formed directly into an input-process-output structure.

This structural decomposition is useful for the user in

analyzing the completeness of Input/Output variables and

the consistency between system functions. Through the

requirement analysis stage, we can therefore obtain a refined

document based on structural decomposition, and this

document is very useful for the analyzer in generating the

formal specification. The formal methods that the analyzer

uses for specifying the software requirements in Step 4

affect the type of structure found in the analysis.

Fig. 5 shows a schematic diagram of Step 3. After the

review of each document in the first stage, structures of

system is decomposed by input-process-output type and the

user analyzes the structures for the increasing quality of

system. Consequently, NuSCR formal specification in Step

4 can be started from this result of structure decomposition.

Table 3 shows an example of structure decomposition for

AMS.
3.2.2. Step 4: NuSCR formal specification and analysis

In the approach, Step 4 supports formal specification and

analysis based on the NuSCR approach. In this work, we

selected the NuSCR approach mentioned in Section 2

because it provides an environment for verifying



Fig. 5. Schematic diagram of structure decomposition and analysis.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 255
the functional requirements of a nuclear control system.

Besides providing a specification approach to specifying

requirements, it also provides a verification environment.

Fig. 6 shows overview of the NuSCR approach. The NuSCR

approach supports formal specifications based on FOD,

SDT, FSM, and TTS and formal verifications using SMV

and PVS.

For the NuSCR specification, basic information of

input/output variables and functions should be imported

from the result in Step 3. With the Step 3 input-process-

output type of structure, we have successfully used the

NuSCR approach to draw an FOD and an SDT.

Fig. 7 shows an example of NuSCR specification.

Fig. 7(a) is a FOD for g_Fixed_Setpoint_Rising_Trip_

with_OB, fixed set-point rising trip logic in BP (bistable

processor) of RPS, where g_ denotes the group prefix.

Boxed nodes represent inputs and outputs. SDT, shown in

Fig. 7(b), defines function variable f_X_Valid appearing in

the FOD. If the value of f_X is between k_X_MIN and

k_X_MAX, the output value f_X Valid is 0, indicating

normal case. Otherwise output value is 1. NuSCR allows

multiple and related terms be written together on the same

row. That is, in the AECL-notation, one would have no

option but to divide into two rows: (f_XOZk_X_MIN) and

(f_X!Zk_X_MAX). This example is too trivial for
Table 3

An example of structure decomposition for AMS
developer to appreciate the difference in expressiveness.

However, in the Wolsung SDS2, which was considerably

simpler in complexity than KNICS RPS, the most complex

SDT consisted of 16 rows and 12 columns because complex

equations had to be decomposed into ‘primitive’ fragments.

Domain experts repeatedly emphasized that mathematical

equations used in trip logics, no matter how complex they

are, are well-understood and proven-correct as a whole to

domain experts and that they need not be artificially

fragmented in the specification.

Fig. 7(c), TTS for th_X_Trip, shows how behavior of

timed-history variable node is captured. It is interpreted as

follows: ‘If condition f_XRk_X_Trip_Setpoint is satisfied in

state Normal, it enters Waiting state. If the condition remains

true for k_Trip_Delay period while in Waiting state, system

generates the trip signal 0. If f_X_Valid, f_Module_Error, or

f_Channel_Error occur, then trip signal is immediately

produced. In the Trip_By_Error or Trip_By_Logic state , if

the trip conditions are canceled, system returns to Normal

state and the output 1 is generated.’ The TTS expression in

Cond_b [k_Trip_Delay, k_Trip_Delay] means that the

condition must remain true for k_Trip_Delay unit times. In

AECL-style notation, behavior related to time-dependent

state transition was written in tabular notation, and domain

experts preferred automata notation to tabular notation.



Fig. 6. Overview of the NuSCR approach.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260256
Similarly, h_X_OB_Sta, shown in Fig. 7(a), is a history

variable node defined as FSM. FSM is same as TTS except

that time constraints are missing. All constructs in NuSCR,

s.t. FOD, SDT, FSM, and TTS are familiar notations to

domain engineers and software developers. NuSCR has

been evaluated as being easy to specify and understand by

domain engineers [20].
4. NuSISRT: an integrated tool for the software

requirements analysis

In this section, we describe the NuSISRT, a computer-

aided tool supporting software inspection and requirement
Fig. 7. NuSCR specifi
traceability for nuclear engineering developed in this work.

The NuSISRT totally supports the effective technique we

proposed in this work for analyzing software requirements.

By using the NuSISRT, we can straightforwardly conduct

the phases of software requirement analysis based on IE

approach for requirements described in Section 3 of this

paper.

The NuSISRT comprises tools for document evaluation,

traceability analysis, structural analysis and inspection

meeting support. Designed to support the inspection of all

software development documents, the NuSISRT is a PC-

based application designed for anyone who needs to manage

requirements. To support our approach systematically, the

NuSISRT has three kinds of views: an inspection view, a

traceability view, and a structure view. It also has a Web

page for inspection meetings, though because of the

similarity to general Web pages on the Internet it is not

discussed here.

4.1. Inspection view

The support of document evaluation with the inspection

view is a main function of the NuSISRT. It supports an

elicitation function that reads a text file and copies paragraph

numbers and requirement text to a NuSISRT file. It can read

any text data that is convertible to ‘.txt’ format. It also

supports the manual addition of individual requirements and

can import from various formats. The inspection view

permits users to associate database items by defining

attributes; the attributes attached to individual database

items provide a powerful means of identifying subcategories

or database items and of managing requirements.
cation example.



S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 257
Fig. 8 shows an example of the inspection view of the

NuSISRT. The inspection view reads source documents,

identifies requirements, and elicits main requirements for

import into the database. The inspection view automatically

finds and elicits requirements based on a set of keywords

defined by the user. As the requirements are found, they are

highlighted as shown in Fig. 8. The user can also manually

select and identify requirements. The inspection view

enables the production of an user-defined report that

shows various types of inspection results. The user builds

up the architecture of the desired reports on the right-hand

window of Fig. 8. If the user writes down checklists in this

window, the NuSISRT can directly support the software

inspection with this functional window. The requirements to

be found by the tool are located in a suitable checklist site

using various arrow buttons in the window. In this way, each

inspector can examine the requirements and generate the

inspection result documents with the aid of the NuSISRT.
4.2. Traceability view

As mentioned, the NuSISRT supports normal parent-

child links for managing requirements. Furthermore, it

supports peer links between items in a database and general

documents; the peer links provide an audit trail that shows

compliance to quality standards or contractual conditions.

This function is related to the requirement traceability

analysis of our approach.

Fig. 9 shows an example of a traceability view. As shown

in Fig. 9, the NuSISRT provides mechanisms that easily

establish and analyze traceability through real-time visual

notification of change in a matrix form. In Fig. 9, the column

number of the matrix represents a requirement of the source

file, and the row number of the matrix represents the

destination file. The relationships between the source and

the destination are expressed in a matrix window using
Fig. 8. Inspection view
linked chains and unlinked chains. The linked chains mean

that source requirements are reflected in destination

requirements. The unlinked chains indicate that source

and destination requirements are changed. As a result, it is

necessary to verify the change between source and

destination documents. The question marks mean that the

traceability between requirements is difficult to define. In

such cases, another analyzer must verify the requirements.

As described in Section 3, we proposed a means of

calculating the similarity between sentences to more easily

support traceability analysis. The traceability view therefore

supports the function of calculating the similarity between

requirements based on each cosine vector similarity and the

case grammar outlined in Section 2. The cosine vector

similarity is for the analysis of English documents, and the

case grammar is for the analysis of Korean documents.

Through this function, the traceability view can automati-

cally represent the similarity by percentage as shown in

Fig. 10; this result is very helpful to the user and the

analyzer. In this way, we can represent the traceability

between documents for the support of Step 2 of our

approach.
4.3. Structure view

For the translation of a formal specification, the

NuSISRT supports Step 3 of our approach through the

structure view. The structure view enables effective

transition to the NuSRS, which is a tool for the NuSCR

formal method. Fig. 11 shows an example of the structure

view. Through the structure view, we can analyze design

documents with respect to a system’s structure. The results

of analysis help generate a formal specification from a

software requirement document written in a natural

language. For structural analysis of systems, defining the

input and output, along with the functions, is essential.
of the NuSISRT.



Fig. 9. Traceability view of the NuSISRT tool.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260258
We therefore proposed in this work the input-process-output

type of structure. In the structure view, several tabular forms

help the user easily build up an input-process-output

structure. Such a structure is represented in the right-hand

window of the structure view as a tree type.

After structural analysis, the structure view generates a

result file written in XML language and then it is transferred

to the NuSRS. With this XML file, the FOD can be drawn

automatically in the NuSRS. Fig. 12 shows an example of

the NuSRS. The NuSRS, which is used in Step 4 of our

approach, is described in Section 3. Using the NuSRS, a

formal requirement specification can be generated in the

software requirement-phase; the specification can then be
Fig. 10. An example of sim
helpful for formally analyzing the system requirements.

The NuSRS is a platform independent tool made with JAVA

for formally specifying the SRS of a nuclear system. It

provides an environment for drawing the FOD and the SDT

and allows automata diagrams to be built from the nodes of

the FOD.
5. Conclusions

In this work, we propose an IE approach for requirements

which is an effective technique for the software require-

ments analysis; the technique enables easy inspection by
ilarity calculation.



Fig. 11. Structure view of the NuSISRT.

S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260 259
combining requirement traceability and effective use of

a formal method. Our approach consists of two stages for

effective V&V tasks: document evaluation and require-

ments analysis. In the document evaluation stage, there are

two kinds of steps: Step 1, the inspection step; and Step 2,

the traceability step. For formal analysis of the require-

ments, our approach suggests two kinds of steps: Step 3, the

structural decomposition and analysis step; and Step 4, the

NuSCR formal specification and analysis step. These steps

are based on V&V tasks for safety-critical systems.

To support the approach in this work, we developed the

NuSISRT which is computer-aided tool supporting software

inspection and requirement traceability for nuclear
Fig. 12. The N
engineering. The NuSISRT systematically supports soft-

ware inspection and has the capability of analyzing

requirement traceability. We also used the NuSRS, which

is another tool for the NuSCR formal method. The NuSRS

enables not only formal specification but also formal

analysis.

Through our effective technique for the software

requirements analysis, we can minimize some of the

difficulties caused by the difference in domain knowledge

between the designer and analyzer. The tools for our

approach can also enhance V&V in the software require-

ment-phase. In the future, we plan to extend our approach to

the next phases of the software life cycle: the design phase
uSRS.



S.R. Koo et al. / Reliability Engineering and System Safety 89 (2005) 248–260260
and the implementation phase. In this way, we expect to

develop an integrated environment throughout the life cycle

for safety-critical systems.
Acknowledgements

This research was supported by KNICS (Korea Nuclear

I&C System) R&D center and NRL project.
References

[1] Harel D. Statecharts: a visual formalism for complex systems. Sci

Comput Program 1987;8:231–74.

[2] Jensen K. Coloured petri nets: basic concepts, analysis methods and

practical use, 2nd Ed., vol. 1. Berlin: Springer; 1997.

[3] Leveson NG, Heimdahl MPE, Hildreth H, Reese JD. Requirements

specification for process-control systems. IEEE Trans Softw Eng

1994;20(9).

[4] Heitmeyer C, Labaw B. Consistency checking of SCR-style

requirements specification. International symposium on requirements

engineering; March 1995.

[5] Cho J, Yoo J, Cha S. NuEditor—a tool suite for specification and

verification of NuSCR. Second ACIS international conference on

software engineering research, management and applications

(SERA2004); 2004. p. 298–304.

[6] Fagan ME. Design and code inspections to reduce errors in program

development. IBM Syst J 1976;15(3):182–211.

[7] Luhn HP. A statistical approach to the mechanized encoding and

searching of literary information. IBM J Res Dev 1957;1(4):309–17.
[8] Yoo Y-J, Seong PH, Kim MC. Development of a traceability

analysis method based on case grammar for NPP requirement

documents written in Korean language. J Korean Nucl Soc 2004;

36(4):307–15.

[9] Schouwen Van AJ, Panas D, Madey J. Documentation of require-

ments for computer systems. In: Proceedings of IEEE international

symposium on requirements engineering; 1993. p. 198–207.

[10] Wolsong NPP2/3/4. Software requirements specification for shunt-

down systems (SDS) 2 PDC, 86-68350-SRS-001; June 1993.

[11] KNICS (Korea Nuclear Instrumentation and Control System Research

and Development Center) [http://www.knics.re.kr].

[12] Yoo J, Kim T, Cha S, Lee J, Son HS. A formal software requirements

specification method for digital nuclear plants protection systems.

J Syst Softw 2005;74(1):73–83.

[13] Henzinger TA, Manna Z, Pnueli A. Timed transition systems. In:

Proceedings of REX Workshop; 1991. p. 226–51.

[14] Kim T, Cha S. Automatic structural analysis of SCR-style software

requirements specifications using PVS. J Softw Test, Verif Reliab

2001;11(3):143–63.

[15] Kim T, Stringer-Calvert D, Cha S. Formal verification of functional

properties of an SCR-style software requirements specification using

PVS. Reliab Eng Syst Safety 2004 [in press].

[16] McMillan KL. Symbolic model checking. Dordrecht: Kluwer

Academic Publishers; 1993.

[17] IEEE. IEEE standard 1012-1998 for software verification and

validation. An American national standard; 1998.

[18] KOPEC. Functional requirements for ATWS mitigation system for

KORI NPP UNIT 1; 2001.

[19] KOPEC. Software requirements specification for ATWS mitigation

system for KORI NPP UNIT 1; 2001.

[20] Yoo J, Cha S, Kim CH, Oh Y. Formal software requirements

specification for digital reactor protection systems. J KISS 2004;

31(6):750–9.

http://www.knics.re.kr

	An effective technique for the software requirements analysis of NPP safety-critical systems, based on software inspection, requirements traceability, and formal specification
	Introduction
	Related works
	Software requirements inspection
	Requirements traceability analysis
	NuSCR approach

	An effective technique for the software requirements analysis
	Document evaluation in IE approach for requirements
	Requirements analysis in IE approach for requirements

	NuSISRT: an integrated tool for the software requirements analysis
	Inspection view
	Traceability view
	Structure view

	Conclusions
	Acknowledgements
	References


