
Software safety analysis of function block diagrams using fault trees

Younju Oha, Junbeom Yoob,*, Sungdeok Chab, Han Seong Sonc

aLG Electronics Inc., LG R&D Complex, 553, Hogye-1dong, Dongan-gu, Anyang-shi, Kyongki-do, Republic of Korea
bDepartment of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST) and AITrc/SPIC/IIRTRC,

373–1, Gusong–dong, Yuseong-gu, Daeje–on, 305-701, Republic of Korea
cKorea Atomic Energy Research Institute (KAERI), I&C and HF team, 150, Deokjin-dong, Yusong-gu, Taejon, Republic of Korea

Received 4 February 2004; accepted 28 July 2004

Available online 19 October 2004

Abstract

As programmable logic controllers (PLCs) are often used to implement safety–critical embedded software, safety demonstration of PLC

code is needed. In this paper, we propose a fault tree analysis technique on Function Block Diagrams (FBDs) which is one of the most widely

used PLC programming languages. FBD is currently being used to develop Reactor Protection System (RPS) for a nuclear power plant in

South Korea. Our approach to fault tree analysis, which combines fault-oriented and cause/effect-oriented viewpoints, is easy to understand

and offers systematic guidelines to ensure safety of PLC code. Domain experts found the approach to be useful through a case study on RPS,

and this paper compares completeness and comprehensiveness of the semi-automatically generated fault trees using the proposed approach

against the one manually prepared by nuclear safety engineers.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Safety analysis; Fault tree analysis; Function block diagram; Programmable logic controller
1. Introduction

Software is increasingly being used to handle safety–

critical system functions that were previously controlled by

humans or hardware in the past. As a large number of

hazards in such systems are known to be caused by software

that controls it, safety analysis is often required on safety–

critical embedded software [1]. In this paper, we focus on

software safety analysis of Function Block Diagram (FBD)

[2] programs. FBD is a standard application programming

language for the Programmable Logic Controller (PLC) [3].

PLC is currently being used in the development of Reactor

Protection System (RPS) by KNICS [4] in Republic of

Korea.

RPS software development starts by first analyzing

preliminary system requirements written in natural language

and performing safety analysis techniques such as FMEA

[5] and HAZOP [6] on the requirements. Software

requirements are then converted to FBD language which
0951-8320/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2004.07.019

* Corresponding author.

E-mail address: jbyoo@salmosa.kaist.ac.kr (J. Yoo).
PLC tools can interpret and compile. Software HAZOP

and software Fault Tree Analysis (FTA) [7] on the FBD

design are usually performed before executable code is

automatically generated. Manual application of FTA on

FBDs is not only labor-intensive but also potentially error-

prone because quality of analysis depends heavily on the

capability of analyst. In addition, primitive notation of FBD

makes the exhaustive identification of faults that can occur

in FBDs difficult.

To analyze FBD programs efficiently, we define fault tree

templates for each FBD function block and propose a semi-

automatic FTA process. The templates combine two different

views, fault-oriented view and cause/effect (CE)-oriented

view. In FBDs, faults may occur because incorrect FBD

blocks are used or input and output paths are incorrectly

connected. Incorrect intermediate values are propagated

through the FBD network to the final output and an undesired

event may occur. The fault-oriented view shows feasible

faults in FBD design. The CE-oriented view illustrates how

incorrect values may be propagated through FBD network.

The proposed approach makes several assumptions to

control complexity of fault trees and focuses on faults that
Reliability Engineering and System Safety 88 (2005) 215–228
www.elsevier.com/locate/ress

http://www.elsevier.com/locate/ress


Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228216
are likely to occur. That is, definition of each function block

is assumed to be correct. For example, AND function block

is identical to the AND gate in the logic design, and we do

not address faults that may be caused by errors in

implementing AND function block. In the RPS design

written in FBDs, only a small number of well-defined FBD

blocks are used, and they have been extensively used in

industry. Therefore, we focus more on the possibilities of

inputs incorrectly connected or incorrect FBD blocks used

(e.g. using AND where OR is required). In addition, our

approach focuses on logical correctness of the FBD design

and do not address hazards that may be caused by common

mode failures or hardware failures. While such failures are

feasible in theory, nuclear applications provide adequate

protection against such failures through fault-tolerant

design.

The proposed approach was applied to the safety analysis

on partial design of RPS. Faults leading to the undesired

system states, which were often omitted in manual safety

analysis, could be identified. Our fault tree was semi-

automatically generated, and domain experts found it to be

easy to understand and review.

The paper is organized as follows. In Section 2, we

briefly review the Function Block Diagram and related work

on software fault tree analysis. In Section 3, we categorize

all feasible faults in FBDs based on our experience with

FBD design and analysis. Section 4 illustrates how two

different and complementary viewpoints to fault tree

analysis can be effectively combined into template defi-

nitions. Section 5 describes fault tree analysis procedure

using the proposed approach and case study which explains

how our approach was used on RPS design through a

comparison between the proposed approach and manually

developed fault trees. Finally, in Section 6, primary
Fig. 1. Categorized example o
contributions of this research are summarized and potential

research topics are discussed.
2. Related work

2.1. Function block diagrams

Programmable Logic Controllers (PLC) [3] are widely

used in diverse control systems in chemical processing

plants, nuclear power plants or traffic control systems.

A PLC, an industrial computer specialized for real-time

applications, is an integrated system containing a processor,

main memory, input modules and output modules that are

coupled together by a common bus.

There are several PLC programming languages. The IEC

61131-3 [2] standards include five: Structured Text (ST),

Function Block Diagram (FBD), Ladder Diagram

(LD), Instruction List (IL) and Sequential Function Chart

(SFC). The FBD is one of the most widely used languages

because of its graphical notations and usefulness in

applications involving a high degree of information or

data flow between control components, that can be designed

as a network of software blocks.

FBD design expresses system behavior in terms of flow

of signals. Functions between input variables and output

variables are graphically represented by a collection of

function blocks ‘wired’ together in a manner resembling a

circuit diagram. A function block is depicted as a rectangle

and input/output variables are connected. Function blocks

are classified into categories according to the operations

they perform and several types of blocks exist in a category.

Fig. 1 shows some of the groups of function blocks and

example blocks in each group. The RPS being developed at

KNICS [4] is programmed with only the five categories
f FBD function blocks.



Fig. 2. FBD example.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 217
shown in Fig. 1. Using just these groups increases

readability and understandability which therefore increases

the software safety in nuclear domains.

Fig. 2 shows a network of function blocks. The output

th_X_Trip is produced by the combination of the function

block operations. First, the GE function compares inputs f_X

and h_X_Trip_Setpoint. The result is inverted and given as

an input to the TOF function. Next, the TOF outputs a result

with the input from the preceding GE block and the delay

time k_Trip_Delay based on its function in Fig. 1. The

output is given to the following SEL function block. The

SEL outputs a 0 or 1 based on the output from the TOF

function. Finally, the result from the SEL function and the

inverted values of f_Channel_Error, f_Module_Error and

f_X_Valid are logically AND-ed. The AND-ed result is

given to the final output variable th_X_Trip.
2.2. Software fault tree analysis

Fault tree analysis on hardware design is a mature topic

[8] used Digraph as an intermediate model to capture the

flow of design errors and proposed a fault tree analysis

method for Gas Regulation System (GRS). Because

Digraph method could handle only static errors, Kocza

and Bossche [9] extended the technique to handle dynamic

behavior of system using Operating Vector (OV) on static

fault trees. In system engineering research, Apostolakis

et al. [10] proposed a modeling and analysis method for

software controlled embedded systems using Dynamic

Flowgraph Methodology (DFM). Developed to specify

and analyze industrial process, this method was applied on

Titan II Space Launch Vehicle Digital Flight Control

System [11] and later extended to support dependability

analysis [12] and hazard analysis [13].

Research on software fault tree analysis, unfortunately, is

not as mature as the hardware counterpart. [14–16]

extracted software fault tree template definitions for various

Ada programming language constructs. The templates,

equivalent to failure semantics of the Ada statements,

offer analyst suggestions on how various statements might

cause or contribute to the failure. It provides a semi-

automatic approach that relieves the extra effort required in

manual fault tree generation.

Papadopoulos proposed Hierarchically Performed

Hazard Origin and Propagation Studies (HiP-HOPS)

that constructs fault trees from an architectural diagram

similar to data-flow diagram [17]. However, it lacks details

at the architecture and component levels. He also extended
HiP-HOPS to handle Matlab–Simulink models [18].

Sullivan [19] proposed a fault tree construction method

from an architecture description language called Reliability

Imbedded Design Language (RIDL) and developed an

analysis tool, called Galileo [20]. It analyzes module and

component information only.
3. Faults in function block diagrams

In FBDs, inputs are passed through various function

blocks and the combinations of the block operations

result in an output. Therefore, to completely analyze

FBDs and improve software safety, one must investigate

all safety factors and identify the possible faults in FBDs

related to the safety factors. Utilizing software failure

mode taxonomy work by Li et al. [21], we defined and

categorized the possible faults in FBDs. They are defined

based on the characteristics of each function block and

the opinions of FBD design experts on where errors

occur most frequently.

3.1. Possible faults in function block diagrams

Faults can occur from a combination of function blocks,

or from a single function block Possible faults in FBDs that

are defined in this work are as follows:

(1) Input or output faults. This fault is similar to the

input/output failure modes defined in software failure mode

taxonomy work by Li et al. [21]. Detailed possibilities

include incorrect input/output variables or values, switched

inputs, untimely inputs/outputs and extreme inputs. First,

incorrect input/output variables or values addresses the

cases that a wrong variable or value is given as an input to a

function block. If the initial value assigned to variable is

incorrect, it is also considered an input fault. Second,

switched inputs means that ordering of inputs to comparison,

selection, or arithmetic blocks must be correct. If inputs IN0

and IN1 to LT (less than) block were accidentally switched,

the output would be obviously incorrect. Third, incorrect

timing of inputs or outputs may cause faults. Errors also

occur when extreme (e.g. maximum or minimum possible)

values are given as inputs. If two variables are compared,

there would be no point in comparing if one was accidentally

given an extreme value because the output will always be the

same regardless of the value of the other input.

(2) Incorrect operation or comparison. Errors can

occur when the wrong arithmetic operation or incorrect



Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228218
comparison is performed. In particular, inclusion/exclusion

of ‘Z‘ is often the most frequent error found in manual FBD

design. This type of fault is similar to failure modes such as

‘Incorrect realization of one of the attributes in a function’

and ‘Introduction of an attribute not specified in the

requirements’ covered in [21].

(3) Omission/misplacement. Omission or misplacement

faults are frequently made mistakes by FBD designers.

Inverters are especially prone to errors. Another possibility

includes omission of an input included in the previous phase

(e.g. software requirements specification) but accidentally

left out in the software design phase and therefore missing in

the FBD design. When compared to research reported in

[21], this fault corresponds to ‘Omission of one of the

attributes for a function’ in ‘Omission of a function’ failure

mode.

(4) Routine errors. These faults correspond to ‘Inter-

Interaction among functions’ failure modes and ‘Multiple

interactions’ failure modes of [21]. A set of connected

blocks, which we call FBD networks or routines, have

dependency among them. If inputs to a particular FBD block

are incorrect, possibilities include propagation of an

incorrect output value from connected FBD blocks or

‘stuck-at’ fault.

(5) Other errors. Possibilities include runtime errors,

internal errors of function blocks, range error (input is

outside the range of the data type) and type error (wrong

type of input). In [21], runtime errors are captured as either

‘Failure modes due to resource competition’ or ‘platform

physical failure modes’. Internal errors of function blocks

are included in the ‘Incorrect realization of a function’

failure mode. Range and type errors are covered in ‘Input/

Output failure’ failure modes.

It should be noted that the faults defined in this work

cover almost all the failure modes included in [21] except
Fig. 3. Categorization of po
‘Environmental impact factors’. The factors are beyond the

scope of this work because FBD-based fault trees deal with

only the faults in software design.
3.2. Categorization of faults in function block diagrams

As exhaustive categorization of all possible faults that

may occur in FBD is impractical, we make some

assumptions in the fault tree analysis For example, as

most commercial FBD design tools provide checks on input

types and missing links in the FBD design, we do not

consider these errors in the proposed technique. We also do

not consider internal errors of function blocks because such

likelihood, while theoretically possible, is remote enough

that such risk is acceptable. Fig. 3 categorizes the faults

mentioned in Section 3.1 and shows which are ‘not

considered’, ‘dependent on function blocks’ and ‘indepen-

independent of function blocks’.

The columns of Fig. 4 show five different FBD groups

and the shaded boxes illustrate feasible faults. If specific

faults may occur only on input values of certain type

(e.g. inverter error on logical or comparison blocks), such

constraints are explicitly noted. Similarly, errors involving

switched inputs may occur among the comparison blocks

only if correct ordering of inputs is critical as it is the case

with FBD blocks such as GT, GE, etc. When comparing

equality or inequality, switched input faults do not matter.

Fig. 4 explicitly notes that such possibilities do not exist by

not shading the corresponding cell. Similarly, faults

involving extreme inputs are applicable only on FBD

blocks belonging to comparison or arithmetic groups.

Careful analysis of FBD blocks, taking the characteristics

of operations into consideration, and feasible failure modes

are captured in the combined fault tree template definitions

as explained in Section 4.
ssible faults in FBD.



Fig. 4. Possible FBD faults for various FBD blocks.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 219
4. Combined template-based fault tree for function
block diagrams

4.1. Combined viewpoints for FBDs

Templates defined for each FBD block include fault-

oriented as well as cause/effect-oriented viewpoints. The

fault-oriented view includes feasible or likely FBD faults.

CE-oriented view is derived from functional definition, so it

is effective in visually illustrating how faults might be

propagated. They overlap in some aspects but help analysts

perform more comprehensive safety analysis. Templates

serve roles similar to that of checklists used in inspection.

Combined templates are illustrated using the SEL (select)

block whose definition was shown earlier in Fig. 1. Fig. 5(a)

is the fault-oriented view template where the root node is the

failure of the SEL output, ‘incorrect output of SEL’. The

grey nodes ‘incorrect input’, ‘switched inputs’ and ‘omitted

inverters’ are the possible faults that can lead to the

undesired top event. Fig. 5(b) is the CE-oriented view

template for the SEL block. The top event is seen as just a

result and the nodes are the causes that lead to the result,

making ‘GZ0’ and ‘IN0’ the causes of ‘output is IN0’. In

other words, Fig. 5(b) represent the function and/or the fault

propagation path of the SEL block.

The template containing both views for the SEL block is

shown in Fig. 6, and there are three types of nodes to

visually show the two views:
–
 cause nodes (white): causes of upper event
–
 fault nodes (grey): faults that can cause undesired event
–

Fig. 5. Two complementary fault tree views: (a) Fault-oriented view and

(b) CE-oriented view.
conditional fault nodes (dotted grey): faults that occur

under certain conditions. For example, fault due to

missing INV is applicable only when the input type is

Boolean and the inverter does not already exist in the

FBD node being analyzed.
Fig. 6 shows the combined SEL template. The causes of

the SEL output are the same as Fig. 5(b). The possible faults

are also the same as Fig. 5(a). However, ‘incorrect input’ is

not included in this template because it is not a fault specific

to the SEL function. This is included in another template

which will be described later on.
4.2. Combined templates for FBDs

When defining templates corresponding to basic FBD

blocks, we make a couple of assumptions so that

compact fault tree may be generated. Assumptions made



Fig. 6. Combined SEL template.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228220
in the template definitions are realistic and do not

compromise quality of safety analysis:

First, function blocks are assumed to have the correct

number and type of inputs. FBD tools provide capability

to detect such errors as well as the range checks.

In addition, we assume that each FBD block correctly

performs the required operation. Second, an inverter

(INV) placed on the output channel of a FBD block is

treated as an input to the FBD block connected by

output–input dependency relations. Such interpretation

does not change the correctness of fault tree but simplify

the definition of fault tree templates. Furthermore, we

assume that there exists only one inverter on a

connection line because two consecutive inverters cancel

each other out in semantics. As an inverter might be

missing in the final output block, such case is addressed

separately.

The constructed templates cover the five function

block groups plus a few others that have been used in
Fig. 7. Top event template.
the development of the RPS. Template nodes are named

and the label is written on the bottom of each node to

improve understandability of fault tree. The following

templates are also defined in addition to the ones for

FBD blocks:
–
 Top event: to include faults that apply to the entire

FBD specification.
–
 Each function block: to include faults specific to a

function block. Faults in the categorization table are

included here.
–
 Terminal node: to include faults that apply to all

function blocks.

(1) Top event template. Faults that apply to the entire

FBD design, missing input and omitted INV at output are

included here. The omitted INV at output node is attached

only when the final output block does not have an inverter

on its output line and the block type is Boolean. It is
Fig. 8. Logic AND template.



Fig. 9. Comparison GE template.

Fig. 10. Arithmetic SUB template.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 221
AND-ed at the root node, to show that the current design is

not the correct design for the intended output (Fig. 7).

(2) Logic block templates. Logic blocks include AND,

OR, NOT, and XOR. As logical blocks produce a Boolean

output, only the fault omitted INV is included in these

templates. When more than two inputs exist for the AND or

OR blocks, leaf nodes can be added to the templates. Fig. 8

shows the template of the AND logic block.

(3) Comparison block templates. Comparison blocks

include GE (greater than or equal), GT (greater than), LE,

LT, EQ (equal) and NE (not equal) functions. Our templates

consider the blocks to have two inputs. The arrow below the

cause nodes are adapted to show that the nodes in the fault

tree should always be in that order. For instance, in Fig. 9,

‘IN0Zvalue’ and ‘IN1Zvalue’, ‘Comparator is O’ and

‘Comparator isZ’ in order means ‘IN0 OZIN1’. The

switched inputs fault is not included in the EQ and NE

template because the order of the inputs does not affect

the output of the EQ and NE block. Fault tree template for

GE block appears complex because there are a variety of

ways in which the GE block may contribute in generation of

an incorrect output although the operation itself is extremely

simple. The fact that a seemingly simple FBD block can

have complex failure scenarios convincingly illustrates the

benefits of having them explicitly defined.

(4) Arithmetic block templates. Arithmetic blocks

include ADD, MUL, SUB, DIV and MOD. Runtime errors

are included in the arithmetic templates. The SUB function
is shown in Fig. 10. When more than two inputs exist for the

ADD and MUL blocks, leaf nodes can be added to

the templates. The switched inputs fault is not included in

the ADD and MUL templates as such faults do not generate

incorrect output.

(5) Selection block templates. The binary selection (SEL)

function transfers IN0 to the output when GZ0 and IN1

when GZ1, and the multiplexer (MUX) function transfers

INn to the output when KZn. The template of SEL is in

Fig. 6. As the SEL function is often used to explicitly show

the output value is 1 or 0, we constructed a separate function



Fig. 11. SEL 0–1 template.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228222
block template in Fig. 11 which shows that if G is 0 then

output is 0 and output is 1 when G is 1. The MUX template

is similar to the SEL template except that it has n number of

subtrees and not just two.

(6) Timer block template. The TOF function outputs a 0

when INZ0 is continued for delay time (PT) and 1

otherwise. If the changes of all variables throughout time

were considered, the fault tree would become too complex

to make analysis meaningful and reviewable. Therefore, we

consider only the changes of the variable to the input IN of

the timer block as time passes. Possibilities, as shown in
Fig. 12. TOF t
Fig. 12, are ‘failed to last for some time period’ and

‘incorrect delay time (incorrect value of PT)’.

(7) Terminal node templates. Faults that are not specific

to FBD blocks but applicable to all blocks are included in

this group. The ‘variable/value’ template has routine faults

and incorrect input variable or value faults. The subtree

with the conditional fault node, incorrect value of input

variable, is added when the top node of the terminal

template is a variable node and not a value node. The

‘comparator/operator’ template has nodes on the incorrect

operation/comparison fault (Fig. 13).
emplate.



Fig. 13. Terminal node templates.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 223
(8) Others. Converter blocks, inverters and the MOV

block, which is a function that assigns an input value to an

output variable, are added as a single node in the fault tree

whenever it appears in the FBD.
5. Fault tree analysis procedure and case study

In this section, we give a procedure for the combined

template-based fault tree analysis with a case study applied

on a partial RPS design.

Step 1. Identification of hazard and related FBDs.

First, the undesired event of the system is determined

and the corresponding output in the FBD is identified. Next,

all networks that can contribute to this output are identified.

Step 2. Fault tree generation. The top event template is

put at the top of the fault tree with the undesired event as the

top event, and the templates of the blocks directly connected

to the output block are attached. Each branch is expanded

until there are no dependent FBD routines or function

blocks left. When all templates are attached, terminal node

templates are added to the remaining cause nodes that are

leaf nodes of the generated tree. ‘variable/value’ templates

are attached to the value or variable cause node whereas the

‘comparator/operator’ templates are attached to the operator

or comparator nodes.

When expanding fault trees, analyst may choose to

simplify the fault tree by eliminating irrelevant branches.

For example, if an unwanted event occurred at the output of

an AND block by outputting an incorrect value 1, only
the rightmost subtree, the subtree with top event ‘OutputZ
1’ may be attached as shown in Fig. 14.

Step 3. Cut-set analysis. The last step is to generate the

minimal cut sets, as typically performed on safety analysis,

so that analysts may obtain additional insights as to how

logical design errors found through fault tree analysis can be

best corrected.

5.1. Case study

This section shows how the proposed approach was

applied to the safety analysis of RPS of the nuclear power

plant system, which is currently being developed at KNICS

[4] in South Korea. It is also compared to the fault tree

manually developed by a domain expert.

The manual reset variable set-point trip with operating

bypass, whose partial logic is shown in Fig. 15, is a trip

logic in nuclear power plant’s Digital Plant Protection

System (DPPS) Reactor Protection System (RPS) Bistable

Processor (BP). While the input value (log power: f_X) is

valid (f_X_ValidZ1), if the input value falls below the

predefined fixed trip set-point then the trip signal

(th_X_Trip) occurs. A preliminary trip logic (th_X_Pre-

trip) exists that has a higher trip set-point than the trip,

which plays a role in warning the operator beforehand. If

a pretrip signal occurs, the operator can manually reset the

set-point before a trip signal occurs. This way, the set-

point keeps falling, allowing the system to shutdown

safely. A trip bypass logic (h_X_OB_STA) shows that a

trip does not occur if the operator initiated a bypass

signal.



Fig. 14. Partial application of AND template.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228224
Step 1. Identification of hazard and related FBDs. The

FBD of the RPS is designed so that the trip signal

corresponds to the variable th_X_Trip which is the output

of the FBD shown in Fig. 15, and the occurrence of the trip

signal is depicted by ‘th_X_TripZ0’ and ‘th_X_TripZ1’

otherwise. We identify the unwanted event as ‘normal

signal (output 0 or 1) occurs but outputs the wrong signal.’

Since the FBD for RPS is based on a 0/1 logic, the top event

of the fault tree is set to ‘Incorrect output of 0’ or ‘Incorrect

output of 1’. The top event for the fault tree of the trip logic

in Fig. 15 is ‘incorrect output of th_X_TripZ1’, which

means that a signal of ‘th_X_TripZ1’ occurs although the

system behavior was intended for a trip signal to occur.

The dependent networks in Fig. 16 are h_X_OB_STA and

f_X_Valid routines.

Step 2. Fault tree generation. This step is shown in

Figs. 16 and 17. The incorrect output ‘th_X_TripZ1’ (failed

to output trip signal) becomes the top event. The fault tree

generation begins by applying the top event template as in

Fig. 16. After the top event template is attached, the AND

template of the output block, AND1, is attached. The AND

templates of the following AND2 and AND3 blocks are also

attached. Although all are AND functions, the attached

templates look somewhat different in Fig. 16. This is

because in AND2 and AND3, inverters are added as single

nodes, and in AND3, the Omitted INV node is not attached

since inverters exist at both of the inputs of the AND3 block.

The templates for all following blocks are attached in the

same manner. Once all the templates of the blocks in all

dependent routines have been applied, the terminal node

templates are attached to the leaf nodes to show the

possibilities of incorrect inputs, routine faults or wrong

operations and comparisons. In Fig. 17, the terminal node

templates are attached to the cause leaf nodes of the LE

block because there are no following connections to it.

Step 3. Cut-set analysis. Once the fault tree is generated,

it will contain all possible sets of events that can contribute
to the hazardous result. The analyst can follow the paths

where the nodes are ‘true’ and will eventually come upon a

set of events that correspond to the current FBD design.

The fault nodes in this set are the faults that caused the top

event to occur. In this case, we found a cut set starting from

the top node FAIL_TRIP (th_X_TripZ1) continuing down

to leaf nodes. The leaf nodes contained one fault node,

which was an ‘incorrect input value’ node. This node

describes that the input of IN1, which is being compared to

IN0 by LE1 (less than or equal), was incorrect. Therefore

we can conclude here that the input of IN1, k_X_Trip_

setpoint is incorrect. Input IN1 should be the variable

h_X_Trip_Setpoint, and not the fixed value

k_X_Trip_Setpoint.
5.2. Comparative study

A fault tree was manually prepared by domain experts

who have extensive experience on applying fault tree

analysis and familiar with features of the RPS system used

in the case study. Since it captures only the likely causes to

the same hazard in the experts’ personal opinion, it would

vary from one expert to another. Fig. 18 shows a part of

the fault tree for Fig. 15. The left tree is the manual fault tree

by safety engineers and the right tree is the fault tree

generated by our approach.

The dotted boxes show some of the differences between

the two fault trees. Since the undesired output is

‘th_X_TripZ1’, all inputs to AND1 are 1 making inputs

to AND2 and AND3 1 also (0 when there is an inverter on

the input line). The bottom nodes on both trees contain this

information.

In the manually generated tree, errors such as

misplaced inverters or omitted inverters are not con-

sidered. Although these are some of the most frequently

made errors in the FBD design, the safety analyst assumed

that the inverters are correctly placed. Missing input is



Fig. 15. FBD of manual reset variable set-point trip with operating bypass logic.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 225
also missing in the manually developed fault tree and not

considered as a fault.

Faults such as wrong execution order or missing routine

are not consistently considered for all variables either. For

example, wrong execution order and missing routine are
Fig. 16. Fault tree
considered for the variable h_X_OB_STA (not shown in

Fig. 18). However, they are not considered for the variable

f_X_Valid, as can be seen in Fig. 18 that the node

‘f_X_ValidZ0’ is not developed further, although a routine

for it does exist in the design. In the manual fault tree,
generation.



Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228226
internal block errors are considered to contribute to the

undesired output but faults such as incorrect input variable

or value are not explicitly shown. Since the fault tree

analysis depends on the analysts, the analysts’ knowledge or

assumptions will affect how complete the analysis becomes.

When two different fault trees are compared for complete-

ness and comprehensiveness, the following observations

can be made:
(1)
 Proposed technique is clearer and easier to understand

because the propagation path events (causes) and fault

events are separately depicted.
(2)
 Faults that are frequently missed in manual analysis

(e.g. omission faults) are explicitly identified.
Fig. 17. Application of term
(3)
inal
As the proposed approach provides templates to be used

in the fault tree generation, safety analysis is likely to be

more productive than the manual approach.
(4)
 Templates contain complementary viewpoints and

conditional fault nodes. Therefore, it is highly likely

to be more complex (e.g. more nodes and branches)

than the manually developed and ‘focused’ fault tree.
The fault tree was proved to be useful by nuclear domain

experts in the safety analysis of FBDs used in the nuclear

domain. Safety expert’s opinions on the combined template-

based approach were that it provided a more complete

analysis in identifying faults and that the templates provide

a semi-automatic fault tree analysis that is easy to apply.
node templates.



Fig. 18. Comparison of two fault trees generated by different approaches.

Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228 227
6. Conclusion and future work

In this paper, we propose a fault tree analysis

technique on function block diagrams. As FBDs are

often used to implement safety–critical software, such

techniques are needed to achieve desired quality

assurance and to satisfy regulatory requirements. Our

approach uses templates combining fault-oriented and

CE-oriented views so that safety analysis may be more

thorough and easier to review for completeness. The

fault-oriented view contains information on the possible

faults that can occur in FBDs. The faults were

categorized and included in the templates. The CE-

oriented view contains the functions of each function
block. Since FBD is a connection of blocks, the function

blocks that produce an output become the propagation

paths of the faults. Fault tree templates combined from

the two viewpoints help analysts perform more compre-

hensive safety analysis than a manual approach.

Our technique was applied to the representative trip logic

of KNICS RPS, which is currently being developed in South

Korea, and it shows that it is applicable to real-world

systems. Nuclear engineers found the proposed template-

based fault tree analysis approach was proved to be useful in

identifying faults leading to the undesired trip result in RPS.

A future research plan is to make the templates more

context-sensitive to the FBD specification in order for the

generated fault tree to be more compact.



Y. Oh et al. / Reliability Engineering and System Safety 88 (2005) 215–228228
References

[1] Leveson N. SAFEWARE: system safety and computers. Reading,

MA: Addison-Wesley; 1995.

[2] International Electrotechnical Commission. IE International Standard

1131-3, Programmable Controllers, Part 3, Programming Languages;

1993.

[3] Mader A. A classification of PLC models and applications. In:

Proceedings of WODES 2000: fifth workshop on discrete event

systems, Gent, Belgium; August 21–23 2000.

[4] KNICS. Korea Nuclear Instrumentation and Control System Research

and Development Center. http://www.knices.re.kr/english/eindex.

html

[5] Maier T. FMEA and FTA to support safe design of embedded

software in safety critical systems. In: Proceedings of CRS 12th

annual workshop on safety and reliability of software based systems;

1997, p. 351–67.

[6] Mauri G. Integrating safety analysis techniques, supporting identifi-

cation of common cause failures. PhD Theses; 2000.

[7] Vesely W, Goldberg F, Roberts N,Hasel D. Fault tree handbook.

System and Reliability Research Office of Nuclear Regulatory

Research, US Nuclear Regulatory Commission; January 1981.

[8] Andrews JD, Brennan G. Application of the Digraph method of fault-

tree construction to a complex control configuration. Reliab Eng Syst

Safety 1990;28(3):357–84.

[9] Kocza G, Bossche A. Automatic fault-tree synthesis and real-time

trimming, based on computer models. In: Proceedings of reliability

and maintainability symposium; January 1997, p. 13–6.

[10] Garret C, Guarro S, Apostolakis G. The dynamic flowgraph

methodology for assessing the dependability of embedded

software systems. IEEE Trans Syst, Man Cybernetics 1995;

25(5):824–40.
[11] Yau M, Guarro S, Apostolakis G. Demonstration of the dynamic

flowgraph methodology using the Titan II space launch vehicle digital

flight control system. Reliab Eng Syst Safety 1995;49(3):335–53.

[12] Yau M, Apostolakis G, Guarro S. The use of prime implicants in

dependability analysis of software controlled systems. Reliab Eng

Syst Safety 1998;62(1):23–32.

[13] Garrett C, Apostolakis G. Automated hazard analysis of digital

control systems. Reliab Eng Syst Safety 2002;77(1):1–17.

[14] Cha S, Leveson N, Shimeall T. Safety verification in murphy using

fault tree analysis. In: Proceedings 10th international conference on

software engineering, Singapore; April 1988, p. 377–86.

[15] Leveson N, Cha S, Shimall T. Safety verification of Ada programs

using software fault trees. IEEE Software 1991;8(4):48–59.

[16] Min SY, Jang YK, Cha S, Kwon YR, Bae DH. Safety verification of

Ada95 programs using software fault trees. In: Proceedings of

computer safety, reliability and security: 18th international

conference, SAFECOMP’99, Toulouse, France; September 1999,

p. 226–38.

[17] Papadopoulos Y, McDermid J, Sasse R, Heiner G. Analysis and

synthesis of the behaviour of complex programmable electronic

systems in conditions of failure. Reliab Eng Syst Safety 2001;71(3):

229–47.

[18] PapadopoulosY, Maruhn M. Model-based synthesis of fault trees

from Matlab–Simulink models. In: Proceedings of DSN 2001; 2001,

p. 77–82.

[19] Vemuri K, Dugan J, Sullivan K. Automatic synthesis of fault tees for

computer-based systems. IEEE Trans Reliab 1999;48(4):394–402.

[20] Sullivan K, Dugan J, Coppit D. The Galileo fault tree analysis tool. In:

Proceedings of the 29th annual international symposium on fault-

tolerant computing; June 1999, p. 232–35.

[21] Li B, Li M, Ghose S, Smidts C. Integrating software into PRA. In:

Proceedings of 14th international symposium on software reliability

engineering, ISSRE 2003; November 2003, p. 17–20.

http://www.knices.re.kr/english/eindex.html
http://www.knices.re.kr/english/eindex.html

	Software safety analysis of function block diagrams using fault trees
	Introduction
	Related work
	Function block diagrams
	Software fault tree analysis

	Faults in function block diagrams
	Possible faults in function block diagrams
	Categorization of faults in function block diagrams

	Combined template-based fault tree for function block diagrams
	Combined viewpoints for FBDs
	Combined templates for FBDs

	Fault tree analysis procedure and case study
	Case study
	Comparative study

	Conclusion and future work
	References


