
48 49

1

FBDtoVerilog: A Vendor-Independent Translation
from FBDs into Verilog Programs

Junbeom Yoo , Jong-Hoon Lee
Div. of Computer Science and Engineering

Konkuk University
Seoul, Republic of Korea

{jbyoo , kirdess}@konkuk.ac.kr

Sehun Jeong , Sungdeok Cha
Dept. of Computer Science and Engineering

Korea University
Seoul, Republic of Korea

{gifaranga , scha}@korea.ac.kr

Abstract—FBD (Function Block Diagram) is one of the widely
used PLC (Programmable Logic Controller) programming
languages in plant automation industry. Many vendors and
products have their own forms and formats, which are not
compatible with others. Formal verification techniques and tools
for FBDs should have provided vendor- and product-specific
versions. PLCopen, a vendor/product independent worldwide
association, provides a standardized way to define FBDs in an
XML format. This paper proposes a CASE tool, FBDtoVerilog,
which translates the PLCopen-FBDs into Verilog programs.
Verilog is an input programming language for formal verification
tools such as VIS (Verification with Interaction and Synthesis). It
had been efficiently used as an input front-end of formal
verifications, when developing software controllers of nuclear
power plants in Korea. We demonstrate its usefulness and
effectiveness with a prototype version of FBDs which had
developed for APR-1400 nuclear power reactor in Korea.

Keywords-Translation; PLCopen; FBD; Verilog; CASE

I. INTRODUCTION

FBD is one of the five widely used PLC programming
languages defined by International Electrotechnical
Commission (IEC) [1]. It visually expresses PLC controller’s
behavior as sequentially interconnected function blocks. The
KINCS project [2] developed a new RPS (Reactor Protection
System) for Korean nuclear power plants and implemented its
software in FBDs. Rigorous quality demonstration of RPS
software was also required by the regulation agency (e.g.,
KINS [3] in Korea) prior to issuing operational approval.
Automated and formal verification techniques such as model
checking [4, 5] and equivalence checking [6] was applied to the
FBDs in order to ensure adequate quality assurance.

Formal verification techniques have their own input front-
ends. For example, the VIS verification system [7] needs
Verilog program, while the SMV [8] model checker does SMV
input program or Verilog program. Translation from FBDs into
these front-ends is therefore the first step to applying various
formal verification techniques into FBD programs. Our former
researches on FBD verifications, ‘FBD Verifier’ and ‘PLC
Verifier’ [9, 10] had to use a FBD format specific to POSCO
ICT [11], which generated from its PLC engineering tool
‘pSET’ [12]. Some changes in the format, however, made us
difficult to keep consistency and correctness of the automatic

translators and verification tools. This paper proposes a CASE
tool, ‘FBDtoVerilog’ translating FBDs into Verilog programs,
but uses a de facto standard XML format of FBD, proposed by
PLCopen [13]. PLCopen is a vendor- and product-independent
worldwide association. FBDtoVerilog can translate into
Verilog programs FBDs from any vendors complying with the
association’s standard.

We demonstrated correctness and effectiveness of the
proposed translator through a case study, formal verification of
FBD programs using the SMV and the VIS. We used a
prototype version [14] of FBD programs which had developed
for a nuclear reactor protection system in Korea. The remainder
of the paper is as follows. Section 2 introduces the FBD and
PLC open association briefly. It also introduces relevant
features of Verilog programming language, which are pertinent
to our discussion. Section 3 introduces the CASE tool
FBDtoVerilog. Section 4 explains a case study of formal
verification using the proposed tool. Section 5 concludes the
paper.

II. BACKGROUND

A. Function Block Diagram
An FBD (Function Block Diagram) consists of an arbitrary

number of function blocks, ‘wired’ together in a manner similar
to a circuit diagram. The international standard IEC 61131-3
defined 10 categories and all function blocks. For example, the
function block ADD performs arithmetic addition of n+1 IN
values and stores the result in OUT variable. Others are
interpreted in a similar way.

Fig.1 shows a part of preliminary FBD programs for the
KNICS RPS BP (Bistable Processor) logic. The former was
generated mechanically [15] from a formal requirements
specification [14], while the latter was developed by domain
experts. Even though they look different in appearance, they
show the same behavior. We used these FBDs as examples to
keep consistent with our former work and aid understanding of
FBD programs. These FBDs both creates a warning signal
‘th_X_Pretrip’ when the pre-trip condition (i.e., reactor
shutdown) remains true for k_Trip_Delay time units as
implemented in the TOF function block. The number in
parenthesis above each function block denotes its execution

48 49
2

order. The output ‘th_Prev_X_Pretrip’ from MOVE stores
current value of ‘th_X_Pretrip’ in order to use in the next
execution cycle. A large number of FBDs similar to Fig.1 and
Fig.2 are assembled hierarchically and executed according to a
predefined sequential execution order.

Figure 1. An FBD for th_X_Pretrip logic, generated mechanically

Figure 2. An FBD for th_X_Pretrip logic, developed by domain
experts

B. PLC open
PLCopen [13] is a vendor- and product-independent

worldwide association, aiming to resolve topics related to
control programming and to support the use of international
standards IEC 61131-3 [1]. A working group named TC6 for
XML (eXtended Markup Language) in PLCopen has defined
an open interface between all different kinds of software tools,
which provides the ability to transfer one’s information to other
platforms. This paper used the XML specification defining
FBD programming languages. The format unfortunately does
not include all items which we need to translate FBDs into
Verilog programs, so we used a few items in the specification
for our specific purpose. The details will be introduced in
Section 4.

C. Verilog Programming
Verilog is one of the most common Hardware Description

Languages (HDLs) used by Integrated Circuit (IC) designers.

Many verification and analysis techniques and tools widely use
Verilog as an input programming language.

Fig.3 shows a Verilog program translated from the FBD
described in Fig.2 according to the translation rules [15]. There
are two inputs and two outputs. As input prefixes “k_” indicate
constants variables. th_Prev_X_Pretrip is used as both input
and output. Since it stores the value of th_X_Pretrip using the
MOVE function block, we defined it as a reg variable in lines
(8) and (32). The FBD’s output is produced in the assign
statements (12) ~ (18) by composing several function blocks in
the FBD. It also uses the variable timer to emulate the TOF
function block, which we emulate with procedural assignments
using always statements (19) ~ (31). We restricted the number
of TOF internal states to six in this example as defined in (1).
In addition, we used the clk variable, reserved for simulation
purposes in the VIS verification system, to simulate cyclic
executions of PLCs.

Figure 3. A Verilog program translated from the FBD in Fig.3

III. FBDTOVERILOG

We have used the proposed, but not fully refined, FBD
definition and translation rules [16] to formally verify FBD
programs in the KNICS project. Fig.4 briefly shows how we
have used them to verify the FBD programs with various
verification techniques and tools. It is a part of PLC-based
software development framework we proposed in [15]. We
planned to apply two formal verification techniques into the
FBDs, the model checking and the equivalence checking.
While the former can prove mathematically whether the FBD
satisfies important properties, the latter can conclude whether
two different FBDs show the same behavior or not.

Figure 4. The use of the proposed translator in formal verifications

50 51
3

Figure 5. FBDtoVerilog v1.0 Screen-dump

We had developed automatic translator and verification
assisting tool FBD Verifier [9], and applied them into the
KNICS project in part [17]. However, our former work started
with a specific version of FBDs specialized for POSCON ICT.
In order to apply useful formal verification techniques with no
hindrance from the compatibility problem, we decided to
separate the translator from the specific FBD and used standard
XML format of FBD. Fig.5 depicts a screen-dump of
FBDtoVerilog 1.0 CASE tool which we have developed. It is
embedded in NuSCRtoFBD 3.0 and reads standard FBDs of
PLCopen and produces (synchronous) Verilog programs.

FBDtoVerilog used an addData, general-purpose element
of the PLCopen XML specification [13]. NuSCRtoFBD 3.0
generates PLCopen specific XML that every single function
block element belongs to an externally visible output which
addData element stores its name. Fig.6 shows LE_INT block
cooperate with computing output th_X_Pretrip. FBDtoVerilog
uses the information to translate an FBD’s flat structure into a
Verilog module’s hierarchy structure.

Figure 6. Usage of addData element in th_X_Pretrip FBD
specification

The current version of FBDtoVerilog 1.0 has some room to
improve. First, it produces incomplete Verilog code that
requires manual post-process to supply variable size in bit
vectors. Performing formal verification activities such as
equivalence checking and model checking require complete
size determination. Second, it translates every function block,
even though they are too simple to be defined as a Verilog
function. We suggest practically possible translation option in

Table 1. These aspects will implement in next version of
FBDtoVerilog.

Table 1. Alternative optimized function block translation rule
Current rule Optimized rule

SEL

var = SEL(a, b, c);
…
function SEL;

input in1;
input in2;
input in3;
begin

 SEL = (in1 == 1) ? in3 :
 in2;

end
endfunction

var = (a == 1) ? b : c;

ADD

var = ADD(a, b);
…
function [0:6] SUB_INT;

input [0:6] in1;
input [0:6] in2;
begin

 SUB_INT = (in1 - in2);
end

endfunction

var = a + b;

IV. CASE STUDY

We performed a case study as described in Fig.7 to validate
correctness of FBDtoVerilog 1.0. We translated the system
FBD g_LO_SG1_Level depicted abstractly in Fig.1 and Fig.2
into Verilog programs. And we applied manual post-processing
on the translated code with preserving its original semantic as
we mentioned in Section 3 (see Fig.8). We had plan performing
Cadence SMV model checking and the VIS equivalence
checking against the Verilog program. When preparing the case
study, we only focused on checking the validity of the CASE
tool.

Figure 7. Case study plan

The VIS equivalence checking result shows "sequentially
equivalent" message as we can see in Fig.9, which means two
Verilog programs have same output behavior against same
inputs. We also conducted flawless examination of two source
codes to validate our tool’s correctness, since source codes
have quite different coding style. For example, original domain
expert generated code doesn’t contain user-define functions
that our code has.

Cadence SMV model checker cannot read the Verilog
program which the current version of FBDtoVerilog produced.
We found out that the model checker forbid the reuse of
functions such as SEL or ADD in our code. We are working on
this issue with more refined translation rules. From the results,
we can say that our proto-type FBDtoVerilog archived its main
purpose at minimum that the translated Verilog code has same
behavior with the original code developed and certified by
domain experts.

50 51
4

Figure 8. Translated Verilog code from the FBD in Fig.3

Figure 9. VIS equivalence checking result

Our future work will focus on implementing next version of
FBDtoVerilog. First issue is fully automatic Verilog code
generation feature that includes variable size determination
algorithm. Second issue is Cadence SMV compatible code
generation feature. And we will plan the case study that verifies
further correctness of the FBDtoVerilog through VIS
equivalence checking and Cadence SMV model checker using
all FBDs used in the KNICS project.

V. CONCLUSION

As safety critical systems are using FBD as standard
representation of software design, software verification on
FBDs becomes indispensable. Our former researches on FBD
verifications used a vendor-specific format of FBD, and it
made us difficult to keep consistency and correctness of the
automatic translator and verification tools. This paper proposes
a CASE tool, ‘FBDtoVerilog’ translating FBDs into Verilog
programs, but uses a de facto standard XML format of FBD,
proposed by PLCopen. We demonstrated correctness and
effectiveness of the assisting tool through a case study, formal
verification of FBD programs using the VIS. We used a
prototype version of FBD programs developed for a nuclear
reactor protection system in Korea. The case study
demonstrated that the CASE tool, FBDtoVerilog translates
standard FBDs into Verilog programs correctly and efficiently.

ACKNOWLEDGMENT

This research was partially supported by the MKE (The
Ministry of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency (NIPA-2011-(C1090-1131-0008) and NIPA-2010-
(C1090-1031-0003)). This research was also supported by the
Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2010-0002566).

REFERENCES

[1] IEC (International Electrotechnical Commission), International standard
for programmable controllers: Programming languages: Part 3 (IEC
61131-3), 1993.

[2] KNICS (Korea Nuclear Instrumentation & Control System R&D Center),
http://www.knics.re.kr/english/eindex.html.

[3] KINS (Korea Institute of Nuclear Safety), http://www.kins.re.kr.
[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic verification

of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Programming Languages and Sysems, Vol. 8, No. 2,
pp.244-263, 1986.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model
Checking, MIT Press, 1999.

[6] Shi-Yu Huang and Kwang-Ting(Tim) Cheng, Fromal Equivalence
Checking and Debugging, chapter 4, Kliwer Academic Publishers, 1998.

[7] Robert K. Brayton, Gary D. Hachtel, Alberto Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen A. Edwards,
Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, Rajeev K.
Ranjan, Shaker Sarwary, Thomas R. Shiple, Gitanjali Swamy, and
Tiziano Villa, “VIS : A system for verification and synthesis,” In the
Eighth International Conference on Computer Aided Verification, CAV
'96, pages 428-432, 1996.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[9] Eunkyoung Jee, Seungjae Jeon, Sungdeok Cha, Kwanyong Koh,
Junbeom Yoo, Geeyong Park, and Poonghyun Seong, “FBD Verifier:
Interactive and Visual Analysis of Counterexample in Formal
Verification of Function Block Diagram,” Journal of Research and
Practice in Information Technology, Vol.42, No.3, pp.255-272, August,
2010.

[10] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee, “Verificatin of PLC
Programs written in FBD with VIS, Nuclear Engineering and
Technology, Vol.41, No.1, pp.79-90, 2009.

[11] POSCO ICT, http://www.poscoict.co.kr.
[12] S. Cho, K. Koo, B. You, T.-W. Kim, T. Shim, and J.S. Lee,

“Development of the loader software for PLC programming,” In
Conference of the Institute of Electronics Engineers of Korea, Vol.30,
pp.959-960, 2007.

[13] PLCopen for efficiency in automation, http://www.plcopen.org.
[14] KAERI (Korea Atomic Energy Rearch Institute). Fromal SRS for

Reactor Protection System, KNICS-RPS-SVR131-01 Rev.00, 2005.
[15] Junbeom Yoo, Sungdeok Cha, Chang Hwoi Kim, and Duck Yong Song,

“Synthesis of FBD-based PLC Design from NuSCR Formal
Specification,” Reliability Engineering and System Safety, Vol.87, No.2,
pp.287-294, 2005.

[16] Junbeom Yoo, Eunkyoung Jee, and Sungdeok (Steve) Cha, “Formal
Modeling and Verification of Safety-Critical Software,” IEEE Software,
Vol.26, No.3, pp.42–49, May/June 2009.
Junbeom Yoo, EunKyoung Jee, and Sungdeok Cha, “A Verificatin
Framework for FBD based Software in Nuclear Power Plants,” In The
15th Asia Pacific Software Engineering Conference (APSEC), pages
385–392, 2008

