
Testing of Safety-Critical Software Embedded
in an Artificial Heart

Sungdeok Cha1, Sehun Jeong1, Junbeom Yoo2 and Young-Gab Kim1

1Korea University, Seoul, Korea
2

Abstract Software is being used more frequently to control medical devices such
as artificial heart or robotic surgery system. While much of software safety issues
in such systems are similar to other safety-critical systems (e.g., nuclear power
plants), domain-specific properties may warrant development of customized tech-
niques to demonstrate fitness of the system on patients. In this paper, we report re-
sults of a preliminary analysis done on software controlling a Hybrid Ventricular
Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It
is a state-of-the-art artificial heart which completed animal testing phase. We per-
formed software testing in in-vitro experiments and animal experiments. An ab-
normal behaviour, never detected during extensive in-vitro analysis and animal
testing, was found.

Konkuk University, Seoul, Korea

1 Introduction

The number of patients who suffer from heart-related disease is increasing rapidly.
The American Heart Association estimates that about 800,000 American deaths
were due to heart-related disease in 2006, exceeding casualties caused by cancer
and accidents (AHA 2010). Organ transplant is only a partially effective solution
because a patient’s immune system may reject a transplanted heart, and because
the number of heart donations simply cannot satisfy the demand. According to the
Organ Procurement and Transplantation Network and Scientific Registry of
Transplant Recipients, only 2,277 heart donations were made in the US in 2006
(HHS 2008, 2010).

To the vast majority of cardiac patients, an artificial heart is the only practical
alternative to extend precious life. In 2004, the US Food and Drug Administration
(FDA) approved clinical use of artificial hearts (FDA 2004), and nearly 850 pa-
tients received artificial hearts manufactured by SynCardia (SynCardia Systems
2010). However, to the best of our knowledge, there have been no attempts to
validate the safety of software embedded in an artificial heart in a clinical envi-
ronment. With active cooperation by biomedical researchers, we performed vali-
dation of software embedded in the H-VAD system (Jeong et al. 2009, Lee et al.

C. Dale, T. Anderson (eds.), Advances in Systems Safety, DOI 10.1007/978-0-85729-133-2_9,
© Springer-Verlag London Limited 2011

144 Sungdeok Cha, Sehun Jeong, Junbeom Yoo and Young-Gab Kim

2009). After gaining an in-depth understanding of source code including its archi-
tecture, we measured code coverage using probing statements, performed in-vitro1
testing, and discovered two abnormal behaviours previously unknown to KAOC
staff despite extensive ‘in-vitro system validation’ and animal experiments. We
recently completed the initial phase of animal testing2

This paper is organized as follows. In Section 2, we briefly explain the H-VAD
system with emphasis on software architecture. In Sections 3, we report results ob-
served in software testing of artificial heart software. We describe both in-vitro
and animal testing. Section 4 concludes the paper and suggests future work.

 whose primary objective
was to replicate newly discovered abnormal behaviours.

2 H-VAD artificial heart

H-VAD is a portable artificial heart which set the record of 183 days of successful
operation on a calf. This record is sufficient to satisfy FDA regulations on long-
term experiments. Primary features of KAOC H-VAD are:

� It is easier to carry than other portable artificial heart systems. It combines two
traditional methods to drive pump: air-driven and electric motor-driven. The
motor-driven actuator generates air pressure necessary to pump blood without
any additional air compressor or vacuum pump.

� The system has two control parameters, pumping rates (PRs) and stroke lengths
(SLs), whose values can be changed by pressing buttons. The former sets the
heart beat rate while the latter controls the volume of ejected blood.

The system consists of one or two blood pumps and a control device. As depicted
in Figures 1 and 2, the control device consists of the following components:

Pneumatic pump. The electric motor moves pusher plates back and forth to pro-
duce air flow to the blood pump via a closed-loop air tube. Subsequent valve
movement in the blood pump complements a less than fully functional heart.
Three motor hall sensors provide the input necessary to compute the current direc-
tion and speed of pusher plate movement. Another pump hall sensor captures
crossing of the pusher plates over the centre of the pump.

Display. Essential information (e.g. operation mode, pump status) is shown on the
LCD display.

Control panel. Six buttons, including start and stop, allow users to change the
pump setting.

1 A procedure performed not in a living organism but in a controlled environment.
2 The animals were treated in accordance with The Guide for the Care and Use of Laboratory
Animals issued by Korea University School of Medicine.

Testing of Safety-Critical Software Embedded in an Artificial Heart 145

CPU. A TMS320 F2810 microprocessor, a Texas Instrument chip, executes the
embedded software.

H-VAD control device

Blood pump

Fig. 1. KAOC H-VAD

Left
atrium

Right
atrium

Left
ventricular

Right
ventricular

Blood pump

Human Heart

Blood flow

Air flow

ValveValve

Motor

Mode = ...
PR =
SL = ...

Control panel

Display

Pneumatic pump

H-VAD control device

Software
(TMS320 F2810)

Event
handler
routines

Motor hall sensor
signals

Pump hall sensor
signals

6 button signals

Display
output

routines

Motor
monitoring

routines

Motor
controlling

routines

Pump
monitoring

routines

Pump
controlling

routines

Emergency
checking
routines

Device status
information

Pusher plate

Fig. 2. Hardware context diagram of H-VAD

H-VAD software monitors and controls the motor to keep the pump’s movement
stable according to the current PR and SL setting. PR is calculated based on the
number of pusher plate movements per minute, and SL is calculated on the dis-
tance between the two end points.

There are about 9,000 lines of C code, including vendor-supplied skeleton
code, scattered in over 20 files. Logic unique to KAOC H-VAD is implemented in
about 3,800 lines of code organized in an event-driven architecture, with four in-
terrupt handlers tracking motor speed and plate movements, six routines process-
ing button inputs, and a timer routine.

146 Sungdeok Cha, Sehun Jeong, Junbeom Yoo and Young-Gab Kim

Two emergency modes of operation are built into the system. One is triggered
if there is no motor hall sensor signal input for 500 milliseconds, and the other oc-
curs when the pump actuator does not pass the centre position in 3,000 millisec-
onds.

3 Testing the H-VAD software

Our quality assurance effort on H-VAD software consists of two parts: code cov-
erage measurement in in-vitro environment using blood-like liquid and ‘live’ ani-
mal testing conducted in close consultation with KAOC staff and in compliance to
the relevant guideline.

3.1 In-Vitro environment: testing and code coverage measurement

When our project began, the H-VAD system had already been fully developed,
and animal testing successfully kept a calf alive for 183 days. However, no analy-
sis had been conducted with a particular emphasis on software. Our first task was
to understand the system requirements and develop in-depth knowledge of the
software logic through code review. We monitored execution, using 211 probing
statements we added, in an in-vitro environment to determine which program
paths have been taken. Because all branch conditions are relatively simple, no dif-
ferences existed among several coverage criteria (e.g. branch or condition cover-
age) defined in the software testing literature. We made sure that probing state-
ments did not alter program semantics.

While recording execution traces, we manipulated the H-VAD setting by re-
peatedly pressing buttons so that the software would exercise as many branches as
possible. Figure 3 illustrates how we systematically prepared test cases based on
the following guidelines:

� Each button, the only medium through which users may influence system be-
haviour, is pressed at least once.

� All permitted parameter values are covered, and an attempt was made to set the
value outside the possible range. For example, stroke length may vary from 30
to 90 while the ‘typical’ setting is 60.

� The stop button was pressed at arbitrary and random moments to simulate as
many exceptional situations as practicable and at various pump positions.

� We tried to force the system to engage in both predefined emergency modes.

Analysis of execution traces revealed that 170 of 211 probe statements (80.6%)
had been executed. Further analysis of uncovered probes revealed the following:

Testing of Safety-Critical Software Embedded in an Artificial Heart 147

� Some statements are logically unreachable. For example, the switch statement
had true and false paths to follow, but the programmer, for some unknown rea-
son, had implemented yet another default path to follow in case neither path is
taken. Statements in the default clause could never be executed in the absence
of abnormal control errors.

� The possibility of executing some statements is permanently determined by the
hardware configuration. For example, execution of some switch-case statement
is based on a control variable indicating deviation of the centre hall sensor in-
stallation position from the actual centre position of the pump. Such deviation
never occurs unless one performs physical reconstruction of the pneumatic
pump.

Fig. 3. Test cases for the code coverage test

148 Sungdeok Cha, Sehun Jeong, Junbeom Yoo and Young-Gab Kim

While measuring code coverage in the in-vitro environment, we found two ab-
normal behaviours of the H-VAD system while executing the test cases high-
lighted in Figure 3. Our collaborators, biomedical engineering research staff at
KAOC who developed the system and conducted ‘system-level testing’ as well as
animal experiments, were unaware of such behaviour. They agreed that the
H-VAD system appeared to be malfunctioning.

First, we noticed an unintended excessive pumping, as illustrated in Figure 4,
while executing the test case TC9 shown in Figure 3. The monitored PR value is
abruptly increased when Ref_Left_MAX_Velocity, one of several variables used
in computing motor speed, is set to a negative value. This change flipped the
shape of the curve used in motor speed decision. Sudden and excessive pumping
may yield critical, if not fatal, consequences to a ventricular system in clinical use
due to the increased blood flow and tension.

Fig. 4. Unintended, sudden, and excessive pumping

The other anomaly, shown in Figure 5, involves recurrent oscillation of pump
speed where actual pump rate is simply unable to match the specified rate. Test
case TC2 from Figure 3 uncovered this anomaly. This pattern was ‘audibly’ ap-
parent as the pump kept trying to meet but ended up exceeding the target value
and repeated a similar effort in the reverse direction. It appears that the H-VAD
control algorithms failed properly to deal with subtle and exceptional scenarios in
sufficient detail.

However, we must not forget that these anomalies took place in a realistic but
not actual environment. While the in-vitro circulatory system mimics the human
body (e.g. fluid characteristics closely match those of human blood), there are

Testing of Safety-Critical Software Embedded in an Artificial Heart 149

fundamental gaps between the two. It is difficult, if not impossible, to accurately
reproduce the dynamic and continuous physical changes occurring inside a human
body using a static in-vitro system. Still, the anomaly we discovered was serious
enough to warrant further investigation in a more realistic environment, and an
animal test was scheduled.

Fig. 5. Recurrent oscillation of pump rate

3.2 H-VAD software testing in an animal experiment

The primary objectives of animal testing were to compare code coverage in the
clinical environment against that recorded in the in-vitro setting, and to determine
if the two abnormal behaviours we uncovered in the in-vitro setting would occur
in the clinical environment. Prior to the animal experiment, in addition to obtain-
ing proper approval, we carefully developed and documented scenarios to repeat
the anomalies. In addition to logging the values of critical variables used in the
software, we also logged all the critical information, including vital biometric sig-
nals such as blood pressure and flows, using sensors attached to an animal. Fur-
thermore, we used a video camera to record all relevant information during an
animal experiment to enable accurate post-mortem analysis. See Figure 6.

When measuring code coverage, we tried to the best of our ability to maximize
coverage while not endangering the life of the testing subject (a piglet). In the in-
vitro setting, we could arbitrarily change the PR and SL values, but in the animal
experiment updates made to the PR and SL values could result in rapid and poten-
tially fatal changes in the blood flow and pressure of the animal. Such constraints
limited the feasible test cases we could execute in the animal experiment. Fur-
thermore, behaviour of the H-VAD system, even in the identical setting, is differ-

150 Sungdeok Cha, Sehun Jeong, Junbeom Yoo and Young-Gab Kim

ent between animal and in-vitro environments. For example, an attempt to set the
SL value to the permitted minimum failed in the animal experiment, as it kept
triggering an emergency mode; this had not previously happened.

Fig. 6. Animal experiment setting

In the animal experiment, we observed that 166 out of 211probing statements
(78.7%) were covered. This small difference in coverage was caused by our in-
ability to repeat certain test cases so as not to endanger the animal’s life. We there-
fore concluded that there was virtually no difference in code coverage between the
two experimental settings.

In the animal experiment, we were unable to recreate situations where exces-
sive pumping occurred despite our complete understanding of the software logic
and the test sequences which led to the anomaly. We knew that Ref_Left_MAX_
Velocity would assume a negative value, in the software configuration we tested,
if the actual pump rate was much larger than the user specified PR value. While
we were able to increase the real PR value fairly rapidly in the in-vitro environ-
ment with no difficulty, such a phenomenon did not occur in the animal experi-
ment. Figure 7 illustrates our effort. Our domain experts explained that the root
cause of the difference lies in the strong blood tension in the live circulatory sys-
tem and the subsequent decrease in the pump rate.

One must remember that our inability to reproduce this anomaly does not nec-
essarily guarantee that the system is completely free from such an anomaly. How-
ever, considering the physical and fundamental differences in operational envi-
ronments, it appears fairly safe to claim that such an anomaly would not occur in
clinical usage.

On the other hand, we were able to recreate the other anomaly in which the
H-VAD system was unable to converge to the specified setting. Figure 8 illus-
trates how this anomaly is revealed in the blood pressure graph. Partial success of
H-VAD software validation in the animal experiment clearly reveals that further
analysis of software correctness is absolutely necessary prior to clinical use.

Testing of Safety-Critical Software Embedded in an Artificial Heart 151

Fig. 7. An attempt to recreate the excessive pumping anomaly

Fig. 8. Oscillation of pump rate revealed in irregular blood pressure

4 Conclusions

Use of software in medical devices, especially in life-critical and clinical settings,
is beginning and will increase in the future. In practice, as well as artificial hearts,
a robotic surgery system is another notable example where software has direct and
immediate impact on a patient’s life. Such trends, however, will surely increase
and appear to be irreversible. In order to ensure the safe operation of such devices,
researchers in the software engineering and software safety communities need to
work more closely with domain experts. The research reported in this paper could

152 Sungdeok Cha, Sehun Jeong, Junbeom Yoo and Young-Gab Kim

not have been carried out without the active participation and enthusiastic support
of physicians and biomedical engineers.

One must develop systematic approaches to safety-critical software validation
while minimizing casualties, including animals used in clinical testing. Real world
validation through deployment, like command and control systems in military war
game systems, is often impossible. Yet, one must develop approaches to develop
credible safety assurance.

While it is absolutely necessary, animal testing is labour-intensive and costly.
In order to conduct the animal testing reported in this paper, three MDs, including
a surgeon, and several assistants had to offer their expertise. The preparatory sur-
gical operation alone took nearly six hours. Each animal used in an experiment has
different and unique vital characteristics. Therefore, one must be careful not to
overly generalize results from animal experiments.

Our experience proves once again how difficult it is to make a credible claim
on software quality especially in a safety-critical setting. Although highly useful
and essential, testing of safety-critical software embedded in medical devices in an
in-vitro setting has limitations.

We are planning various activities to continue our research on software safety
issues in medical systems. One possibility includes model-driven development
(MDD) of software. Once a formal model is developed, test cases might be gener-
ated automatically, and model checking techniques could be applied. One might
able to synthesize source code as has been accomplished in other domains (e.g. the
nuclear industry).

Numerous significant challenges must be resolved to achieve technical break-
through. Faithful and accurate modelling of the environment seems to be one of
the most difficult challenges. In the case of an artificial heart, one must mathe-
matically model all the essential details of the human circulatory system.

Acknowledgments This research was supported by the National IT Industry Promotion Agency
(NIPA) under the program of Software Engineering Technologies Development. The authors
would like to express thanks to research staff at the Korea Artificial Organ Center. Mr Chi-bum
Ahn provided extraordinary support in our quest to understand the H-VAD system and validate
its software safety.

References

AHA (2010) Heart disease and stroke statistics 2010 update at-a-glance. American Heart Asso-

ciation. http://www.americanheart.org/downloadable/heart/1265665152970DS-3241%20Hear
tStrokeUpdate _2010.pdf. Accessed 25 August 2010

Desikan S, Ramesh G (2006) Software testing: principles and practice. Pearson Education
FDA (2004) Recently-approved devices 2004 device approvals. U.S. Food and Drug Administra-

tion. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovals
andClearances/RecentlyApprovedDevices/ucm073321.htm. Accessed 25 August 2010

HHS (2008) The 2008 annual report of the OPTN and SRTR: heart transplantation. US Depart-
ment of Health and Human Services. http://www.ustransplant.org/annual_reports/current/.
Accessed 25 August 2010

Testing of Safety-Critical Software Embedded in an Artificial Heart 153

HHS (2010) Organ procurement and transplantation network national data. US Department of
Health and Human Services. http://optn.transplant.hrsa.gov/latestData/step2.asp. Accessed 25
August 2010

Jeong G, Hwang C, Nam K, Ahn C, H Kim, Lee J, Choi J, Son H et al (2009) Development of a
closed air loop electropneumatic actuator for driving a pneumatic blood pump. Artif Organs
33:657-662

Lee J, Kim B, Choi J, Choi H, Ahn C et al (2009) Optimal pressure regulation of the pneumatic
ventricular assist device with bellows-type driver. Artif Organs 33:627-633

SynCardia Systems (2010) About SynCardia Systems, Inc. http://www.syncardia.com/SynCardia
/about-syncardia.html. Accessed 25 August 2010

	Testing of Safety-Critical Software Embeddedin an Artificial Heart
	1 Introduction
	2 H-VAD artificial heart
	3 Testing the H-VAD software
	3.1 In-Vitro environment: testing and code coverage measurement
	3.2 H-VAD software testing in an animal experiment

	4 Conclusions
	Acknowledgments
	References

