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With increased use of programmable logic controllers (PLCs) in implementing critical systems, quality
assurance became an important issue. Regulation requires structural testing be performed for safety-crit-
ical systems by identifying coverage criteria to be satisfied and accomplishment measured. Classical cov-
erage criteria, based on control flow graphs, are inadequate when applied to a data flow language
function block diagram (FBD) which is a PLC programming language widely used in industry. We propose
three structural coverage criteria for FBD programs, analyze relationship among them, and demonstrate
their effectiveness using a real-world reactor protection system. Using test cases that had been manually
prepared by FBD testing professionals, our technique found many aspects of the FBD logic that were not
tested sufficiently. Domain experts, having found the approach highly intuitive, found the technique
effective.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

PLCs are widely used to implement safety-critical systems such
as nuclear power plant control software. Among the five standard
PLC programming languages defined by the International Electro-
technical Commission (IEC) [1], FBD is a commonly used imple-
mentation language. The Korea Nuclear Instrumentation and
Control System R&D Center (KNICS) project [2], whose goal is to
develop a comprehensive suite of digital reactor protection system,
is an example. For such systems be approved for operation, devel-
oper must demonstrate compliance to strict quality requirements
including unit testing and coverage measurement. NRC (Nuclear
Regulatory Commission) [3] mandates that software unit testing
for safety-critical systems as follows:

. . .The two aspects of test coverage that are particularly impor-
tant for the unit testing of safety system software are coverage
of requirements and coverage of the internal structure of the code.
. . . For safety system software, the unit test coverage criteria to
be employed should be identified and justified. . . . [USNRC Reg-
ulation Guide 1.171] [4]

‘‘Coverage of requirements” is usually demonstrated by domain
experts conducting functional testing in which test cases are man-
ually derived from requirements expressed in natural language.
ll rights reserved.
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When testing FBD software, simulation-based functional testing
is often performed on intermediate C code or other model gener-
ated from FBD programs [5,6].

Structural testing techniques and test coverage criteria suitable
to FBD programs have not been well-established. Although some
PLC vendors (e.g., AREVA NP) provide intermediate C code genera-
tion facility, generated code is often used only for simulation pur-
pose and not for structural testing. Even if C code is subject to
structural testing using well-known coverage criteria, there are
several limitations when applied directly to FBD code. First, as C
code generation scheme is not standardized, coverage measure
for a given FBD might be different from one vendor to another.
More importantly, C code does not map directly to the original
FBD programs, and coverage analysis result would be difficult to
understand to FBD testers.

As a member of the KNICS project, due to lack of structural test-
ing technique and coverage criteria readily applicable on FBD, we
tried to apply existing techniques and coverage criteria as much
as practical by transforming an FBD program into equivalent con-
trol flow graph (CFG) [7,8]. Unfortunately, CFG does not accurately
reflect data flow-centric characteristics of FBD. It was difficult to
accurately express data flow relations in control flow graphs and
formally define a relationship between parts of the control flow
graph and the corresponding FBD blocks. Our experience made it
clear that conventional structural testing techniques and coverage
criteria, originally developed with procedural programming lan-
guages like C and JAVA in mind, do not work well on FBD programs.

This paper proposes a new structural testing technique and
three different coverage criteria in which characteristics unique
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to FBDs are fully reflected. We interpret an FBD program as a direc-
ted data flow graph and define the notion of data flow path (d-
path) on the FBD structure. Each d-path is a finite sequence of
edges along which input data ‘‘flow” to the output. We also define
d-path condition (DPC) for each d-path on the basis of function
conditions and function block conditions. We propose three test
coverage criteria for FBD programs using d-path conditions so that
adequacy of the test cases against the selected criterion can be
quantitatively measured. Analysis of uncovered d-paths can also
assist in automatically generating additional test cases necessary
to meet the required coverage goal.

A case study, whose details are explained in Section 4, was con-
ducted in close collaboration with nuclear engineers and FBD test
engineers using a preliminary version of the trip (shutdown) logic
of bistable processor (BP) of reactor protection systems (RPS).
Intermediate C code needs not be generated, and results apply di-
rectly to FBD programs. It must be emphasized that case study was
not conducted on an artificially generated and toy-sized problem
as is often the case with many research papers. We used two rep-
resentative trip modules of the BP subsystem without simplifica-
tion and did not arbitrarily choose test cases used in the case
study. Test cases had been manually generated by FBD testing pro-
fessional working on the KNICS project, and it took nearly 3 man-
months to generate test cases for whole BP system. Coverage anal-
ysis revealed only 90% and 68% achievement with respect to the
basic coverage criteria we defined. FBD testing professionals found
the technique intuitive and easy to understand.

The remainder of the paper is organized as follows: Section 2
provides the background for the study including a literature survey
of the most relevant research. Section 3 explains formal definitions
of basic elements and test coverage criteria for FBD programs. Sec-
tion 4 reports results of a KNICS BP case study and evaluates the
proposed approach. We conclude the paper at Section 5.

2. Related work

2.1. Function block diagram

The main characteristic of the PLC programs is indefinite and
cyclic execution [9]. Program reads input, computes new internal
states, and updates output in each scan cycle. Such behavior makes
PLC suitable for interactions with continuous environments. FBD,
one of the standard PLC programming languages, is widely used
because of its graphical notations and ease of developing applica-
tions with a high degree of data flow among the components.

FBD is a data flow language. It is based on viewing a system in
terms of the flow of signals between processing elements [10]. A
collection of blocks is wired together like a circuit diagram as
shown in Fig. 1. Each block, either a function or function block,
implements a primitive operation (e.g., ADD, SEL (Selection), or
TON (Timer On)), and edges represent data flow. A function does
not have internal states, and its output is determined solely by cur-
rent inputs. In contrast, a function block maintains internal states
Fig. 1. A small FBD program for
and produces outputs. In Fig. 1, the TON block is a function block,
and all other blocks (e.g., ADD_INT, LE_INT, and SEL) are functions.
Number associated with each block denotes its execution order in
the sequence.

Fig. 1 is an example FBD network used throughout the paper. It
calculates the output th X Logic Trip and is a part of the fixed-set-
point-falling trip logic of a BP for RPS. (The software requirement
specification document for BP is about 200 pages long, and its
FBD implementation consists of more than 2000 function blocks
and variables.) The output variable th X Logic Trip is set to true if
f X value falls below the trip set-point ðk X Trip SetpointÞ for long-
er than the specified delay ðk Trip DelayÞ. Trip signal true would
safely shut down a nuclear reactor.

2.2. FBD unit testing

In this paper, we focus on unit testing of FBD programs. A unit
FBD program consists of function blocks necessary to compute a
primary output (e.g. th X Logic Trip in Fig. 1) [11]. The primary out-
put, stored in the PLC memory, becomes an external output or used
internally as input to other FBD units.

Functional testing techniques have been used to test FBD units.
The approach of [5] used ANSI C code generated from FBD program
and developed a simulation-based validation tool named SIVAT. In
[6], FBD program was transformed into High Level Timed Petri Nets
(HLTPN) model, and simulation-based testing was performed on
the HLTPN model. They developed an integrated tool environment
named PLCTOOLS to support the entire development process
including specification, transformation, and simulation. Unfortu-
nately, such approaches do not support analysis on internal struc-
ture and data flow-centric aspects of FBD programs.

Although structural testing on FBD programs is mandated, there
have been no well-established guidelines on structural testing for
FBD programs. Existing structural test coverage criteria [12–14]
are based on CFG and procedural languages. A structured CFG en-
forces single entry and single exit node principle. Each node repre-
sents a basic block which consists of the maximal sequence of
instructions without jumps. FBD, like other data flow languages
such as Lustre and LabView, is based on data flow graph (DFG)
[15] model. In DFG, however, each node and edge represents an
operation and a data flow, respectively. Consequently, a DFG usu-
ally has multiple entries and exits, and control flow is not shown
explicitly. When CFG-based coverage criteria are applied to DFG,
any test case, by definition, would cover all the blocks and edges
included in the DFG.

Attempting to adapt conventional structural testing techniques
is an obvious choice when performing structural testing on FBD
programs. In [7,8], we transformed an FBD program into a seman-
tically equivalent control flow graph using templates for each func-
tion or function block, while taking the execution order into
consideration. Conventional test coverage criteria (e.g., all-edges
or all-uses) were then applied and test cases generated. Unfortu-
nately, domain experts experienced difficulty in interpreting the
calculating th X Logic Trip.
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results. Even when some of the uncovered CFG nodes, edges, or
paths were found, results did not clearly identify the FBD blocks
or data flow that had have not been adequately tested. Most
importantly, CFGs and DFGs are based on different computational
model, and logical errors often made in implementation are unli-
kely to be the same. For example, all-branches coverage criterion
on CFG is based on the assumption that incorrect branches are
the most frequent errors. It is unclear what certain (e.g., say 95%)
branch coverage means when applied to DFG. That is why a set
of new coverage criteria which accurately reflect data flow-centric
aspect of DFG is needed to effectively test FBD programs. Likewise,
it is awkward to apply conventional ‘‘data flow testing” coverage
criteria (e.g., all-defs, all-uses, etc.) as is to DFGs for the same
reason.

2.3. Lustre approach

Research on test coverage criteria for data flow languages is not
new. For example, [16] defined structural test coverage criteria for
Lustre which is a synchronous data-flow declarative language and
often used to specify safety-critical systems. A Lustre program is
treated as a directed graph called an operator network, and the
activation condition specifies when data flow from an input edge
to an output edge may occur. Depending on the path length and
the values taken along the edges, multiple coverage criteria were
defined.

While activation condition concept is useful, [16] has weakness
in that operators are limited to simple temporal operators and that
it is unable to cope with complex function block conditions. Formal
definition of activation condition for function blocks with multiple
outputs is necessary for the approach to become applicable to large
and complex real-world projects. In addition to customizing the
activation condition concept to properly reflect characteristics un-
ique to FBD, we also extended the previous approach by supporting
multiple outputs as well as non-Boolean edges.

3. Structural test coverage criteria for FBD programs

3.1. Basic definition: d-path and d-path condition

We define structural test coverage criteria for FBD programs
based on a formal definition of function block (FB) and d-path.
An FBD program F, a directed graph which consists of multiple in-
puts and outputs, is defined as a tuple, F ¼ hFBs;V ; Ei, where FBs is a
set of function or function block instances, V is a set of variable,
and E is a set of edges. An edge connects one block to another block
or a variable. The FBD program shown in Fig. 1 consists of five
blocks and 13 edges, and there are seven entries and two exits.
As internal edges are not explicitly named, we assign unique
names (e.g., ADD1 or LE2) to all internal edges.

When a function or function block has n inputs and m outputs,
its outputs are eOUTi ¼ OOOOUTiðeIN1; eIN2; . . . ; eINnÞ where e means an
edge, OOO is the name of the function or function block, and
1 6 i 6 m. Fig. 2 shows an arbitrary function. If the OOO in Fig. 2
is ADD, the output of the ADD function is defined as
eOUT ¼ ADDðeIN1; eIN2; . . . ; eINnÞ.
Fig. 2. An arbitrary function and its formal representation.
d-path, which we define in this paper and attach d- prefix to dis-
tinguish it from the general path in the control flow graph, is de-
fined as follows:

Definition 1. (d-path) A d-path is a finite sequence he1; e2; . . . ; eni
of edges, where 8i 2 ½1;n� 1�; ei; eiþ1 2 E and eiþ1 is a successor of
ei. y

The length of a d-path is same as the number of edges included
in it. A unit d-path is a d-path with length 2 in the form hei; eoi.
Semantics of a function or function block is defined by a set of unit
d-paths from an input edge to an output edge. In Fig. 2, p1; p2; pn,
etc. represent unit d-paths. A d-path is guaranteed to be finite be-
cause FBD programs have no internal feedback loops.

Let DP denote the set of all d-paths from input edges to output
edges. Let DPn denote the set of all d-paths of length n. If the max-
imum length of the d-paths in an FBD program is n;DP of the FBD
program is represented by DP ¼

S
i¼1...nDPi. If there are several d-

paths of the same length, we uniquely identify each by attaching
another suffix (e.g., p51 and p52 are two d-paths of length 5). For
example, FBD program shown in Fig. 1 has seven d-paths defined
for the output th X Logic Trip and the maximum d-path length is
5. Therefore, DP ¼ DP5 [ DP4 [ DP3 [ DP2 [ DP1, and illustrative
examples include:

DP5 ¼ fp51; p52g � � � of length 5
p51 ¼ hk X Trip Setpoint;ADD1; LE2; SEL4; th X Logic Tripi
p52 ¼ hk X Trip Hys;ADD1; LE2; SEL4; th X Logic Tripi
DP2 ¼ fp21g � � � of length 2
p21 ¼ hk Trip Delay; th X Logic Tripi

d-path condition (DPC) of a d-path p, similar to the activation condi-
tion first proposed in [16], is the condition along the d-path of an
FBD program under which input value plays a role in computing
the output. We use the d- prefix to distinguish it from the tradi-
tional path condition defined on a control flow graph. The d-path
condition is defined by a function DPC : DP ! EX where DP and
EX refer to the set of all d-paths and a set of logical expressions
composing of variables, respectively.

Definition 2. (d-path condition) The d-path condition of a d-path
of length n;DPCðpnÞ, is defined recursively as follows:

DPCðpnÞ ¼

true if n¼ 1
DPCðpn�1Þ ^ FCðhen�1;eniÞ if n P 2 and hen�1;eni

is connected by a function
DPCðpn�1Þ ^ FBCðhen�1;eniÞ if n P 2 and hen�1;eni

is connected by a function block

8>>>>>><
>>>>>>:

where function condition, FCðhen�1; eniÞ, is defined for each function,
and function block condition, FBCðhen�1; eniÞ, is defined for each
function block. y
3.2. Function condition (FC) and function block condition (FBC)

FCðhei; eoiÞ, is the condition under which the value at the output
edge eo is influenced by the value at the input edge ei through a sin-
gle function. If a function has n inputs, there exists n FCs for each d-
path from an input to the output. Fig. 3 shows the definition of FCs
for representative functions. There are three different types of FCs.
Type 4, similar definition for function blocks, will be discussed in
the last.

Type 1: All inputs always play a role in determining the out-
put. Best illustrated by the ADD function, FC is true for all the unit
paths. Functions belonging to type 1 include all the functions de-
fined in the arithmetic, converter, and numerical groups as well
as some of the logic group.
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Type 2: Input value appears on output edge unchanged only
in certain condition. SEL function is an obvious example in that
either eIN0 or eIN1 flows into the output unchanged depending on
the value of eG. AND block is another example. While one might
also argue that AND belongs to the type 1, we classify it as type
2 because it characterizes behavior of AND block more precisely.
If eIN1 is true, same value flows into the output only if the other in-
put eIN2 is also true. If eIN1 is false, the output is also false without
any further constraint. Formal definition on FC for the AND block
with two inputs IN1 and IN2 is:

if p1 ¼ heIN1; eOUTi ^ p2 ¼ heIN2; eOUTi ^ eOUT ¼ ANDðeIN1; eIN2Þ;
FCðp1Þ ¼ if eIN1 then eIN2 else true

¼ :eIN1 _ eIN2

FCðp2Þ ¼ :eIN2 _ eIN1

Type 3: Some or all input values are used in the output com-
putation under specific condition. Unlike type 2 functions, output
of type 3 functions is not necessarily same as one of the inputs.
Rather, some or all inputs are used in determining the output, or
output data type is different from that of input data. Functions of
comparison group belong to type 3. For example, LE function with
two integer inputs generates a Boolean output. When the function
LE has two inputs, all FCs of the LE are true. Inputs always influence
the output. However, when the function LE has 3 inputs, FCs are
defined as follows:

if p1 ¼ heIN1; eOUTi ^ p2 ¼ heIN2; eOUTi ^ p3 ¼ heIN3; eOUTi ^ eOUT ¼
LEðeIN1; eIN2; eIN3Þ,
FCðp1Þ ¼ if ðeIN1 6 eIN2Þ then ðeIN2 6 eIN3Þ else true

¼ :ðeIN1 6 eIN2Þ _ ðeIN2 6 eIN3Þ
FCðp2Þ ¼ true
FCðp3Þ ¼ :ðeIN2 6 eIN3Þ _ ððeIN1 6 eIN2Þ

Type 4: ‘‘Internal” variables as well as inputs must be ana-
lyzed to determine the output. FBCðhei; eoiÞ is same as FBðhei; eoiÞ
except ei and eo is connected by a single ‘‘function block”. Whereas
FC definitions are relatively simple, FBC is more complex due to
internal variables as well as input variables. In the proposed tech-
nique, internal variables are modeled as function blocks with im-
plicit edges. In this section, we use TOF (Off Delay), shown in
Fig. 4(a), as an illustrative example. TOF has two input variables,
IN and PT, and two output variables, Q and ET. IN is a Boolean input,
and PT indicates delay time. Similarly, Q is a Boolean output, and ET
captures the elapsed time of the internal timer. Semantics of TOF
function block is such that it generates the Q output false when
IN input remains false during the delay time specified by variable
PT ever since IN value changed from true to false. Otherwise, the
output Q is true. The behavioral definition of timer such as TOF is
described by timing diagrams as shown in Fig. 4(b). It shows
how outputs Q and ET vary in response to different IN values. As
time, labeled ‘t’, passes from left to right, Boolean variables IN
and Q change between false and true.

To formally define TOF semantics, we use condition and action
table as shown in Table 1. The condition is specified in terms of in-
put and internal variables. Likewise, action is an assignment made
to output and internal variables. In representing all possible com-
binations of relevant variables, preIN and inT denote the value of IN
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Fig. 4. TOF function block and its behavioral definition (a) TOF function block (b) TOF timing diagram.

Table 1
Condition and action table describing behavior of TOF.

Cases Condition Action

iepreIN eIN ieinT eQ ieinT

1 0 0 0 0 Remains stopped
2 0 0 0 < ieinT < ePT 1 Continues increasing
3 0 0 P ePT 0 Stops and remains
4 0 1 – 1 Stops and is reset
5 1 0 0 1 Is reset and starts
6 1 1 0 1 Remains stopped
7 1 – 0 < ieinT – Nonexistent case
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stored in the previous scan cycle and internal timer, respectively. ie
represents an implicit edge as opposed to an explicit edge.

FBCs for the output Q of TOF are evaluated as follows:
if p1 ¼ heIN; eQ i ^ p2 ¼ hePT ; eQ i ^ eQ ¼ TOF QðeIN; ePTÞ,

FBCðp1Þ ¼ if eIN then true else ð:iepreIN ^ ðieinT ¼ 0 _ ðieinT P ePTÞÞÞ
¼ eIN _ ðiepreIN ¼ 0 ^ ðieinT ¼ 0 _ ieinT P ePTÞÞ

FBCðp2Þ ¼ ðieinT > 0Þ

For the FBCðp1Þ, when eIN is true, it flows into the output eQ

without any constraints. If eIN is false, output eQ is also false only
if ð:iepreIN ^ ðieinT ¼ 0 _ ðieinT P ePTÞÞÞ.

3.3. D-path condition computation

Process of deriving d-path condition (DPC) is similar to the one
used in backward symbolic execution. Starting from the output edge
of the given d-path, each FB or FBC is expanded. For example, there
are two functions and one function block in the d-path p41 ¼
hf X; LE2; SEL4; th X Logic Tripiwhose DPC is calculated as follows:
Expressions shown in (1) through (5) visually highlight which
element is replaced as DPC computation proceeds backward. When
backward symbolic computation is completed, DPC should contain
expressions containing only the input and internal variables be-
cause all the expressions corresponding to the intermediate edges
would be replaced. The expression of (5) is transformed into the
expression with only input and internal variables by substituting
intermediate edge names with expressions from (6)–(9).

SEL4 ¼ :th Prev X Trip ? LE3 : LE2 ð6Þ
LE3 ¼ f X 6 k X Trip Setpoint ð7Þ
LE2 ¼ f X 6 ADD1 ð8Þ
ADD1 ¼ k X Trip Setpoint þ k X Trip Hys ð9Þ
3.4. FBD test coverage criteria

Building on the definition of DPC, we now define three different
coverage criteria for FBD programs. They are basic coverage (BC),
input condition coverage (ICC), and complex condition coverage
(CCC). In addition to formal definition and analysis, we also discuss
how these criteria can be used in test case generation so that a
suite of test cases may satisfy the chosen criterion.

Definition 3. (Basic Coverage) A set of test cases T satisfies the
basic coverage criterion if and only if 8p 2 DP9t 2 TjDPCðpÞjt ¼ true. y

Basic coverage (BC) focus on covering every d-path in the FBD
program under test at least once. Test requirements for BC are
DPCs for all d-paths of the target program. As noted earlier, a test
case t is ‘‘meaningful” if the input of the d-path p have influence
in determining the output of p. Such condition is captured by
jDPCðpÞjt ¼ true in the above definition. Otherwise (e.g.,
jDPCðpÞjt ¼ false), the test case t is unable to make the input of
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the p ‘‘flow down” the given d-path and ‘‘survive” all the way to the
output. Such test case is surely ineffective in testing the correct-
ness of the d-path, and it fails to contribute towards meeting the
coverage requirement.

Fig. 5, a partial logic for calculating th X Trip taken from the
KNICS project, clearly illustrates how selected test cases may or
may not satisfy certain coverage criteria. As shown in Fig. 6(a),
there are 7 DPCs of lengths 3 or 5. If we are to assume that the con-
stant values k X Min and k X Max are 2 and 98, respectively,
TS1 = {(2, 0, 0, 0)} for the inputs ðf X; f Module Error; f Channel
Error; th X Logic TripÞ would achieve 100% BC. In the tables of
Fig. 6, we marked ‘O’ to represent that the test requirement on
the column is satisfied at least once by the test cases of the test
set on the row.

While basic coverage is straightforward in concept, it is often
ineffective in detecting logical errors that FBD program might have.
Suppose that the (7) AND_BOOL function had been incorrectly used
instead of (7) OR_BOOL block. In such situation, the test set
Fig. 5. A simplified FBD progra
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Fig. 6. Coverage assessment result
TS1 = {(2, 0, 0, 0)} would still satisfy the basic coverage 100%, and
it would be unable to detect such error. What’s needed is another
coverage in which all the variation of values of Boolean input edge
is analyzed.

Definition 4. (Input Condition Coverage) A set of test cases T
satisfies the input condition coverage criterion if and only
if, 8p 2 DP; 9t 2 TjinðpÞ ^ DPCðpÞjt ¼ true and 9t0 2 Tj:inðpÞ ^
DPCðpÞjt0 ¼ true where inðpÞ is a Boolean input edge of the d-path
p. y

To satisfy the ICC, it is no longer sufficient to choose an arbitrary
value on all the input edges whose values would influence the out-
come (e.g., DPCðp31Þ). Fig. 6(b) illustrates that one must now
choose a set of test cases such that input values include both true
and false for 3 Boolean inputs (e.g., DPCðp31Þ ^ME as well as
DPCðp31Þ ^ :ME). There are 10 test requirements to be satisfied,
and TS1 achieves only 70% (or 7 out of 10) coverage with respect
to the ICC. TS2, a super set of TS1 including another test case (2,
m for calculating th X Trip.
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1, 1, 1), is needed to satisfy 100%. However, TS2 would still fail to
detect the error assumed earlier because TS1 and TS2 examine only
the (0,0) and (1,1) combinations of f Channel Error and th X
Logic Trip variables.

Definition 5. (Complex Condition Coverage) A set of test cases T
satisfies the complex condition coverage criterion if and only if,
8p 2 DP; 9t 2 Tjei ^ DPCðpÞjt ¼ true and 9t0 2 Tj:ei ^ DPCðpÞjt0 ¼
true where ei is a Boolean edge in the d-path p of length n and
1 � i � n. y

The CCC criterion requires that every Boolean edge’s variation in
the d-path be tested at least once under the satisfied DPC. For the
same FBD programs, as illustrated Fig. 6(c), one must satisfy 50 dif-
ferent test requirements although we chose to explicitly specify
only 14 of them due to space limitations. The first six columns
show test requirements relevant to p31 ¼ hf Module Error;OR6;
th X Tripi which has three Boolean edges.

Test set TS3, containing two more test cases, must be included
to achieve 100% of the CCC. It is important to note that Fig. 6 shows
how different coverage criteria demands more thorough analysis of
the FBD logic for a given DPCðp31Þ. Whereas there is only one test
requirement for BC, the corresponding numbers increase to two
and six for ICC and CCC, respectively.

Various analysis, including subsumption relations, can be per-
formed on three different criteria. In software testing research lit-
erature, a test coverage criterion A is said to subsume another
criterion B iff, for every program P, every test set satisfying A with
respect to P also satisfies B with respect to P [13]. Therefore, ICC
criterion apparently subsumes BC criterion. If inðpÞ is not a Boolean
type, test requirements for ICC and BC criteria become the same.
For a Boolean input type, every test set satisfying inðpÞ ^ DPCðpÞ
and :inðpÞ ^ DPCðpÞ at least once also satisfies DPCðpÞ for every
d-path p; thus, every test set satisfying ICC criterion also satisfies
BC criterion. Similarly, CCC criterion subsumes both ICC and BC cri-
teria. Every test set satisfying ei ^ DPCðpÞ and :ei ^ DPCðpÞ at least
once, for every d-path p and 1 6 i 6 n, also satisfies inðpÞ ^ DPCðpÞ
and :inðpÞ ^ DPCðpÞ at least once, because inðpÞ is a specific case of
ei where i is 1.

4. Case study and evaluation

4.1. KNICS bistable processor trip logic

We applied the proposed technique on two of the 18 trip logics,
FIX_RISING and MANUAL_RATE, in the Bistable Processor (BP) de-
sign from the KNICS project. Table 2 shows size information and
coverage assessment result. MANUAL_RATE module is more com-
plex than FIX_RISING module. According to the unit test result doc-
ument [17], there were 8 and 19 test cases for each, respectively. If
one were to divide 18 trip logics into four groups in terms of com-
plexity, 1 indicating the simplest and 4 the most complex modules,
our examples belong to the groups 1 and 3. Therefore, two modules
are representative enough of the BP design in terms of size and
complexity. However, we made no simplification on the FBD design,
and we used test cases prepared by FBD testing professionals in en-
tirety in evaluating adequacy of test cases. It took two skilled FBD
engineers working full-time for about 6 weeks each to document
FBD testing plan and generate test cases for the whole BP system.
Table 2
Submodule information and coverage assessment result.

Submodule name # Blocks # Inputs # d-Paths #

FIX_RISING 26 10 30 8
MANUAL_RATE 53 23 305 1
The most striking result of the case study is that test cases de-
rived by domain experts achieved only 90% and 68% of the BC for
the two submodules, respectively, although the definition is rela-
tively simple. In fact, when informed on coverage measures, they
were surprised that their test cases failed to investigate FBD pro-
grams in adequate depth.

Fig. 7 visually demonstrates detailed coverage analysis result
applied on the FIX_RISING trip logic. It consists of 26 functions
and more than 60 edges, and there are 30 d-paths for a primary
output whose length vary from 2 to 9. As it is unnecessary for read-
ers to review the detailed FBD design to appreciate significance of
the result, we omit the full FBD design. Eight different test cases,
each with 3 inputs, were subject to coverage analysis with respect
to BC, ICC, and CCC. Other constant inputs are omitted to keep the
table size manageable. Columns at the right part of the tables rep-
resent test requirements which grow from 30 for BC to 35 and 240
for ICC and CCC, respectively. Test requirements have different
forms (e.g., DPCðpxxÞ; inðpxxÞ ^ DPCðpxxÞ;:ei ^ DPCðpxxÞ, etc.) accord-
ing to selected coverage criteria.

Shaded cells represent the test requirements satisfied by each of
8 test cases. For example, executing test case T1 with respect to BC
covers 10 DPCs. As expected, each test case usually satisfies several
DPCs. However, there are 3 DPCs that were never covered, and the
BC coverage measure is 90% (or 27 out of 30). DPCs that had not
been covered are highlighted with thick lines. When the same de-
sign and test cases are evaluated using ICC and CCC, coverage mea-
sure dropped to about 83% (or 29 out of 35) and 66% (or 158 out of
240), respectively. This case study, convincingly demonstrated that
the proposed idea is highly effective in revealing which logical as-
pects of FBD design remain untested, assessing quality of test
cases, and monitoring progress towards meeting the mandated
quality goals.

Proposed coverage criteria can also be used generate missing
test cases to satisfy uncovered test requirements. We used a SMT
solver, Yices [18], to solve uncovered test requirements and found
two more test cases T9 = (26805, F, 0) and T10 = (26805, T, 0) for
inputs PV, TL, and TC, respectively. Inclusion of two test cases
would increase coverage measure to 97% for BC (from 90%), 97%
for ICC (from 83%), and 83% for CCC (from 66%), respectively.

4.2. Coverage criteria evaluation

For any test coverage criteria be effective, the following proper-
ties must hold: (1) Test coverage criteria definition must be intui-
tive and properly reflect the computational model; (2) One must be
able to formally reason on subsumption relationship among differ-
ent criteria; (3) One must be able to accurately specify the quality
goals, measure current quality of software, and monitor progress in
quality assurance activity; and (4) For a given criteria, one must be
able to generate test cases necessary to achieve the mandated
coverage.

In this paper, we proposed structural test criteria suitable for
FBD programs which properly reflect data flow-centric aspect of
the computational model. Conventional coverage criteria, based
on control flow graph, are clearly inadequate to FBD because any
test case would easily achieve 100% of statement or branch cover-
age. Such test is highly unlikely to detect logical errors in FBD pro-
grams. BC, ICC, and CCC criteria are defined based on the formal
Test cases BC (%) ICC (%) CCC (%)

90(27/30) 83(29/35) 66(158/240)
9 68(207/305) 61(229/375) 46(1794/3869)



a

b

c

Fig. 7. Coverage assessment result for the FIX_RISING submodule.
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definition of FBD and d-path. We also defined FCs and FBCs for
functions and function blocks in IEC61131-1 standard. Our ap-
proach, customizing the activation condition concept to FBD, al-
lows focused analysis of data flows from input to output edges.
Case study performed on the BP design of the KNICS project, with
no simplification introduced, clearly demonstrated that the ap-
proach is effective. Our approach revealed many aspects of the
FBD design that had been neglected by FBD testing professionals.
Proposed coverage criteria, ranging from BC to CCC, provide vari-
ous levels of rigor in FBD unit testing. In addition to proving sub-
sumption relationship, we also identified conceptual counterpart
when compared to classical structural testing coverage criteria.
For example, ICC corresponds to the branch coverage in that pro-
grams are tested on both true and false branches. Likewise, d-path
condition is a way of properly reflecting data flow-centric aspect of
the FBD computation model which is similar to the data flow cov-
erage criteria such as all-defs. Therefore, proposed structural cov-
erage criteria on FBD programs allow developers and quality
assurance personnel communicate precisely and effectively in
terms of quality goals and current accomplishments.

Possibility of automated test case generation is another impor-
tant contribution of our research, and we are developing a cover-
age measurement tool with capability to generate test cases
corresponding to uncovered test requirements. To demonstrate
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feasibility, we used a satisfiability module theories (SMT) solver
Yices [18] to derive such test cases. If an FBD program includes
only functions, test case generation can be automated using SMT
solver. In the case of function blocks, such as timer function blocks,
proper sequencing of test cases is also important. Such task is a
part of planned research.

One must realize that it may be impossible to achieve 100% cov-
erage for any coverage criterion because some d-paths may turn
out to be infeasible. For example, no test case may cover
DPCðp42Þ or TRIP LOGIC out ^ DPCðp21Þ. Although infeasible test
requirements do not necessarily imply that the FBD program is
incorrect, such possibility is high if an SMT solver returns ‘unsatis-
fiable’ as result.

D-paths in FBD programs are always finite because FBD pro-
grams do not allow internal loops. On the other hand, cyclic and
infinite execution, an essential characteristic of the PLC programs,
can be considered ‘‘external loop”. We assumed that a test case is
executed on a scan cycle. Testing of FBD programs containing only
functions (e.g., no internal states) is straightforward. Each test case
is independent from others, and the ordering of test cases is irrel-
evant. However, if an FBD program contains function blocks, the
sequence of test cases becomes important due to internal states.
When measuring the adequacy of test set for FBD programs with
function blocks, we should keep track of internal variables as well
as input and output variables in the sequence of test cases. When
generating test cases satisfying test requirements including inter-
nal variables, a test case is not adequate and sequence of test cases
is needed.

5. Conclusion

In this paper, we proposed structural test criteria suitable for
FBD language which is often used to implement safety-critical sys-
tems. While regulation authority requires that safety be rigorously
demonstrated through various activities including unit testing, lit-
tle is known how to rigorously perform structural testing and mea-
sure coverage criteria on FBD programs. Existing structural test
coverage criteria, based on control flow graph, cannot be directly
applied to data flow languages such as FBD. To fill such gap, we fo-
cused on how data flows from input to output edges can be ana-
lyzed, and three different criteria (BC, ICC, and CCC) have been
defined. Proposed structural coverage criteria are found to be intu-
itive to FBD programmers, and the results of a case study convinc-
ingly demonstrated the effectiveness of the proposed technique.
When applied on a FBD design obtained from the KNICS project,
our technique found which logical aspects of FBD design were un-
tested by test cases prepared by FBD testing professional for over
extended period of time. Tool development to automate applica-
tion of structural testing is currently in progress.
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